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Abstract

Following Krasilshchik and Vinogradov [I.S. Krasilshchik, A.M. Vinogradov, Nonlocal trends
in the geometry of differential equations, Acta Appl. Math. 15 (1989) 161–209], we regard PDEs
as infinite-dimensional manifolds with involutive distributions and consider their special morphisms
called differential coverings, which include constructions like Lax pairs and Bäcklund transformations.
We show that, similarly to usual coverings in topology, at least for some PDEs differential coverings
are determined by actions of a sort of fundamental group. This is not a group, but a certain system of Lie
algebras, which generalize Wahlquist–Estabrook algebras. From this we deduce an algebraic necessary
condition for two PDEs to be connected by a Bäcklund transformation. We compute these infinite-di-
mensional Lie algebras for the KdV equation, the Krichever–Novikov equation, the equationut = uxxx
and prove that the third equation is not connected by any Bäcklund transformation with the other two.

As a by-product, for some class of Lie algebrasg we prove that any subalgebra ofg of finite
codimension contains an ideal ofg of finite codimension.
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1. Introduction

In this paper we study special correspondences called (differential) coverings between
systems of PDEs. Roughly speaking, a coveringE1→ E2 is a differential mapping from
one systemE1 to another systemE2 such that the preimage of each local solution ofE2 is a
family of E1 solutions dependent on a finite numberm of parameters.

For example, ifv(x, t) is a solution of the modified KdV equation

vt = vxxx − 6v2vx (1)

then the function

u = vx − v2 (2)

satisfies the KdV equationut = uxxx + 6uux. This is the famous Miura transformation,
which determines a covering from the modified KdV equation to the KdV equation. For a
given local solutionu(x, t) of the KdV equation, a one-parameter family of functionsv(x, t)
is recovered from Eqs.(2) and (1). That is, we havem = 1 for this covering. In general,
systemsE1 andE2 may be overdetermined, but must be consistent.

More precisely, following[1,8,9], we regardE1, E2 as submanifolds in infinite jet spaces.
The (usually infinite-dimensional) submanifold of infinite jets satisfying a system of PDEs
is called theinfinite prolongation of the system and possesses a canonical involutive dis-
tribution called theCartan distribution. This distribution is spanned by the total derivative
operators (regarded as commuting vector fields on the infinite jet space) with respect to the
independent variables. A (differential) coveringτ : E1→ E2 is a bundle of finite rank1 m
such that the differentialτ∗ maps the Cartan tangent subspaces ofE1 isomorphically onto
the ones ofE2. Note that even local classification of coverings is highly nontrivial due to
different possible configurations of the distributions.

It was shown in[8] that all kinds of Lax pairs, zero-curvature representations, Wahlquist–
Estabrook prolongation structures, and Bäcklund transformations in soliton theory are
special types of coverings. In particular, a Bäcklund transformation between two systems
E1 andE2 is given by another systemE3 and a pair of coveringsE1← E3→ E2.

The name ‘coverings’ for such bundles is used because they include usual topological
coverings of finite-dimensional manifolds, seeExample 3.

Recall that for a finite-dimensional manifoldM its topological coverings are in one-to-
one correspondence with actions of the fundamental groupπ1(M) on (discrete) sets. The
main result of this paper is that at least for some PDEsE differential coverings are also
determined by actions of a sort of fundamental group. However, this is not a group, but a
certain system of Lie algebras that we call thefundamental algebras of E. They are arranged
in a sequence of epimorphisms

· · · → fk+1→ fk → · · · → f1→ f0. (3)

Differential coverings of rankm are determined by actions of these Lie algebras onm-
dimensional manifoldsW, that is, homomorphisms fromfk to the algebraD(W) of vector

1 One can consider also coverings of infinite rank[1,8], but we study only the case of finite rank.
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fields onW. Two coverings are isomorphic if and only if the corresponding actions are
isomorphic.

More precisely, the following facts hold:

• for each actionρ : fk → D(W) we introduce an involutive distribution on the manifold
E×W such that the trivial bundleE×W → E becomes a covering denotedτ(ρ) (here
E is endowed with the fixed Cartan distribution),

• for any coveringτ : Ẽ→ E we define an actionρ(τ) : fk → D(Ẽ) for somek such that
τ∗ρ(τ) = 0,

• for an actionρ0 : fk → D(W) and the coveringτ = τ(ρ0), the actionρ(τ) is equal to the
composition of the natural embeddingD(W) ⊂ D(E×W) with the actionρ0,

• a morphism of coveringsτ1 andτ2 of E induces a morphism of the actionsρ(τ1) and
ρ(τ2),

• a coveringẼ→ E on a neighborhood of each point ofẼ is isomorphic to the covering
τ(ρ) for some actionρ of fk and somek.

The algebraf0 is equal to the Wahlquist–Estabrook prolongation algebra ofE [8,20,22].
To obtain algebrasfk for k ≥ 1, we replace the Wahlquist–Estabrook ansatz by jets of
arbitrary order and find a canonical form of coverings with respect to the local gauge
equivalence.

Note that some similarity between Wahlquist–Estabrook algebras and the topological
fundamental group was noticed in[9]. However, before the present paper this idea was not
developed and did not lead to any applications.

We prove that all finite-dimensional quotients of the fundamental algebras are
coordinate-independent invariants of the system of PDEs. Namely, recall that quotients
of the topological fundamental groupπ1(M) occur as automorphism groups of regu-
lar topological coverings ofM. Similarly, finite-dimensional quotients of the fundamen-
tal algebras occur as Lie algebras of infinitesimal automorphisms of certain coverings
of E.

We conjecture that the fundamental algebras themselves are also coordinate-independent
invariants and hope to prove this elsewhere using the homological techniques of
[5,12,21]. We formulate some conditions for a system of PDEs to possess fun-
damental algebras. We check these conditions and compute algebras(3) for three
PDEs: the KdV equation, the nonsingular Krichever–Novikov equation, and the linear
equation

ut = uxxx. (4)

In all three cases eachfk is obtained from a single Lie algebraK applying several times the
operation of one-dimensional central extension.

For the KdV equation we haveK = sl2(C)⊗C C[λ].
For the nonsingular Krichever–Novikov equation the algebraK is isomorphic to a certain

subalgebra of the tensor product ofsl2(C) with the algebra of regular functions on an affine
elliptic curve. Note that in this casef0 = 0, that is, the Wahlquist–Estabrook ansatz gives
no nontrivial coverings.
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For Eq.(4) the algebraK possesses a filtration by solvable ideals

K0 ⊂ K1 ⊂ · · · ⊂ Kk ⊂ · · · ⊂ K

such that the quotientK/ ∪∞k=0 Kk is solvable as well.
The described methods to compute fundamental algebras can be applied to other evolu-

tion equations as well.
In order to develop this theory, we obtain the following results on Lie algebras, which

may be of independent interest. A Lie algebrag is said to bequasi-finite if any subalgebra
of g of finite codimension contains an ideal ofg of finite codimension. We prove that

• a central extension of a quasi-finite algebra is quasi-finite,
• for a finite-dimensional semisimple Lie algebrag and a commutative associative algebra
A the tensor productg⊗A regarded as a Lie algebra is quasi-finite,

• the algebraK of the nonsingular Krichever–Novikov equation is quasi-finite.

Recall that for a connected topological coveringM̃ → M one hasπ1(M̃) ⊂ π1(M).
It turns out that some analog of this property is also valid for differential coverings, see
Theorems 12 and 13.

We obtain also a necessary condition for two systems of PDEs possessing fundamen-
tal algebras to be connected by a Bäcklund transformation: their fundamental algebras
have to be similar in a certain sense, seeTheorem 14. As an example of using this
necessary condition, we prove that Eq.(4) is not connected by any B̈acklund trans-
formation neither with the KdV equation nor with the nonsingular Krichever–Novikov
equation. Note that this is apparently the first rigorous nonexistence result for Bäcklund
transformations.

In this paper we consider only complex-analytic PDEs. Generalization of this theory to
smooth PDEs is possible, but is a little more technical, since the analogs ofProposition
3 andTheorem 7for smooth manifolds do not hold. However, practically all results will
remain valid in the smooth case if one excludes from considered manifolds a thin subset of
degenerate points.

2. Basics

In this section we review some notions of PDE geometry, actions of Lie algebras on
manifolds and prove auxiliary lemmas needed for further theory.

In Sections2.2–2.6we mainly follow[1,8,10]. However, there are certain modifications
because of the fact that we deal with complex-analytic manifolds, while in[1,8,10] only
smooth manifolds are considered. In particular, we have to use sheaves instead of globally
defined functions. Besides, the notions of subequations and irreducible equations are new.

Most of the notions of Section2.7are studied in more detail in[4].
In order to be more readable, all concepts of PDE geometry are introduced in two ways:

invariant and coordinate.
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2.1. Some terminology

In this paper all manifolds, functions, vector fields, and mappings are supposed to be
complex-analytic.

For a manifoldM we denote byD(M) the Lie algebra of vector fields onM. For a function
f on M and a pointa ∈ M, the differential off at a is denoted bydaf .

The differential of a mappingϕ : M1→ M2 of manifolds is denoted byϕ∗.
Z+ is the set of nonnegative integers.
For subspacesV1, . . . , Vk of a linear space, the space〈V1, . . . , Vk〉 is the linear span of

V1, . . . , Vk.
In this paper a surjective submersion is called a bundle. To emphasize its properties that

in Section2.2 will be extended to infinite-dimensional manifolds, we give the following
definition.

Definition 1. A mappingϕ : M1→ M2 of manifolds is called abundle if

• the mappingϕ is surjective,
• for any pointa ∈ M1 there is a neighborhooda ∈ U ⊂ M1 and a manifoldW such that
ϕ(U) is open inM2 and one has the commutative diagram

whereξ is a complex-analytic diffeomorphism andp is the projection to the first factor.
In this case the preimagesϕ−1(b) of pointsb ∈ M2 are submanifolds inM1 and are

called thefibres of ϕ. They are not necessarily isomorphic to each other, but have the
same dimension called therank of ϕ.

For a bundleϕ : M1→ M2, a vector fieldV ∈ D(M1) is said to beϕ-vertical if ϕ∗(V ) =
0.

In what follows we say that a certain property holdslocally if it holds on a neighborhood
of each point of the manifold under consideration.

2.2. Infinite-dimensional manifolds

We want to extend the category of finite-dimensional manifolds in order to include certain
type of infinite-dimensional manifolds that occur in PDE geometry.

Definition 2. Define a categoryINF as follows.

• First, anelementary object of INF is an infinite chain of bundles
ϕi+2,i+1→ Mi+1 ϕi+1,i→ Mi ϕi,i−1→ · · · ϕ1,0→M0, (5)

whereMi are finite-dimensional manifolds.
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Two elementary objects

{Mi
1, ϕ

1
i+1,i}, {Mi

2, ϕ
2
i+1,i}

such that

∃p, q ∈ Z Mi+q
1 = Mi

2, ϕ
1
i+q+1,i+q = ϕ2

i+1,i ∀ i ≥ p

are regarded to be identical.
Denote byM elementary object(5). A point ofM is a sequence

(a0, a1, . . . , ai, . . .), ai ∈ Mi, ϕi+1,i(ai+1) = ai ∀ i ≥ 0. (6)

Let us introduce a topology on the set|M| of points ofM. Let U be an open subset
of someMp. Denote byUi, i ≥ p, the preimage ofU in Mp+i under bundles(5). The
subset of points(6) such thatai ∈ Ui for all i ≥ p is called theelementary open subset of
|M| corresponding toU and is denoted byS(U). By definition, elementary open subsets
form a base of the topology on|M|.

Let us define the structure sheaf of functions on|M|. Each (complex-analytic) func-
tion f : U → C determines the following function onS(U)

(a0, a1, . . . , ai, . . .) �→ f (ap).

Such functions onS(U) are said to beelementary. Now letZ be an open subset of|M|.
A functiong : Z→ C belongs to the structure sheaf if and only if for each pointa ∈ Z
there is an elementary open subsetS(U) such thata ∈ S(U) ⊂ Z and the restriction ofg
to S(U) is an elementary function.

• If

M1 = {Mi
1, ϕ

1
i+1,i}, M2 = {Mi

2, ϕ
2
i+1,i}

are two elementary objects ofINF then amorphismψ :M1→M2 is given byα, k ∈ Z
and a system of maps

ψi : Mi+α
1 → Mi

2, i ≥ k,

satisfying

∀ i ≥ k ϕ2
i+1,i ◦ ψi+1 = ψi ◦ ϕ1

i+α+1,i+α.

• Now anobject of INF is a topological space with a sheaf of complex-valued functions
that is locally isomorphic to an elementary object ofINF. A mapping of objects ofINF
is amorphism if locally it is a morphism of elementary objects.
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Remark 1. Although this definition is rather sketchy, it is sufficient for us, because all
objects ofINF considered in this paper are open subobjects of elementary objects.

Example 1. With each finite-dimensional manifoldM we associate the following elemen-
tary object ofINF

→ M → M → · · · → M,

where all arrows are the identity mappings. This construction identifies the category of
finite-dimensional manifolds with a subcategory ofINF.

LetM be an object ofINF. The sheaf ofvector fields onM is defined in the standard
way as the sheaf of derivations of the structure sheaf. It is a sheaf of modules over the
structure sheaf of algebras.

In particular, ifM is elementary object(5) then atangent vector at a point(6) ofM is
a sequence

(v0, v1, . . . , vi, . . .), vi ∈ TaiMi, (ϕi+1,i)∗(vi+1) = vi ∀ i ≥ 0.

The vector space of all tangent vectors at a pointa is denoted byTaM.
A distribution onM is a locally free subsheaf of submodules of the vector fields sheaf.

In other words, a distributionD of rankk distinguishes for each pointa ofM a subspace

Da ⊂ TaM, dimDa = k,

such that locally there are vector fieldsX1, . . . , Xk that span the subspacesDa.
For a finite-dimensional manifoldW and an objectM of INF, one defines the object

M×W of INF as follows. It is sufficient to consider the case whenM is elementary object
(5). ThenM×W is the elementary object

→ Mi+1×W ϕi+1,i×id→ Mi ×W → · · · → M0×W.

Now one easily extendsDefinition 1 of bundles to the case whenM1, M2 are objects of
INF. However, we always assume the fibresW to be finite-dimensional manifolds.

In what follows, when we speak of functions on an object ofINF, we always assume
that the functions belong to the structure sheaf.

For the sake of simplicity, below objects ofINF are also called manifolds, and morphisms
of INF are called mappings.

2.3. PDEs as manifolds with distributions

Let π : E→ M be a bundle of finite-dimensional manifolds and

θ ∈ E, π(θ) = x ∈ M.
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Consider a local sectionf of π whose graph passes through the pointθ. Denote by [f ]kx the
class of all local sections whose graphs are tangent to the graph off at θ with order≥ k.
The set

Jk(π) = {[f ]kx|f is a local section ofπ, x ∈ M }

carries a natural structure of a manifold and is called themanifold of k-jets of the bundleπ.
Moreover, the natural projections

πk : Jk(π)→ M, [f ]kx �→ x, πk,k−1 : Jk(π)→ Jk−1(π), [f ]kx �→ [f ]k−1
x ,

are bundles. The infinite sequence of bundles

· · · → Jk(π)
πk,k−1→ Jk−1(π)→ · · · → J1(π)

π1,0→ J0(π) = E (7)

determines an object ofINF that is called themanifold of infinite jets of π and is denoted
by J∞(π).

For each local sectionf of π we have the local sections

jk(f ) : M → Jk(π), x �→ [f ]kx,

of the bundlesπk, k = 0,1, . . .. These sections determine the local section

j∞(f ) : M → J∞(π)

of the natural projectionπ∞ : J∞(π)→ M.
There is a unique distributionC on J∞(π) such that for any pointx ∈ M and any local

sectionf of π over a neighborhood ofx we have

Cj∞(f )(x) = j∞(f )∗(TxM). (8)

This distribution is of rank dimM and is called theCartan distribution of J∞(π).
Consider a system of PDEs of orderk imposed on sections of the bundleπ. We assume

that it determines a submanifoldE0 ⊂ Jk(π) of the manifoldJk(π) such that the mapping
πk|E0 : E0→ M is a bundle. Then a local sectionf of π is a solution of the system of PDEs
if and only if the graph ofjk(f ) is contained inE0.

For eachl ∈ Z+ thelth prolongation of E0 is the set

El = { [f ]k+lx ∈ Jk+l(π) | the graph ofjk(f ) is tangent toE0 with order

≥ l at[f ]kx ∈ E0 },
l = 0,1, . . .. Restricting the mapsπk+l,k+l−1 to El and preserving the same notation for
these restrictions, we obtain the sequence of maps

· · · → El πk+l,k+l−1→ El−1→ · · · → E0. (9)
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Imposing natural conditions of regularity, we assume that allEl are submanifolds ofJk+l(π),
while mappings(9) are bundles. The obtained objectE of INF is called theinfinite prolon-
gation of the initial system of PDEs.

In what follows all considered systems of PDEs are supposed to satisfy these regularity
assumptions and, therefore, possess infinite prolongations. Below such objectE of INF is
sometimes simply called anequation.

The distributionC is tangent toE. Its restriction toE is denoted byCE and is called the
Cartan distribution of E. It satisfies [CE, CE] ⊂ CE. SinceE is infinite-dimensional, this does
not generally imply existence and uniqueness of maximal integral submanifolds.

Definition 3. Let E be an object ofINF andD be a distribution on it. A subsetE′ ⊂ E is
called asubequation of the pair (E,D) if E′ is a submanifold of codimensionl <∞ and
D is tangent toE′. More precisely, this means the following. We haveE′ �= ∅, and for each
pointa ∈ E′ there are a neighborhooda ∈ U ⊂ E and functionsf1, . . . , fl on U such that

• E′ ∩ U = {q ∈ U | f1(q) = · · · = fl(q) = 0},
• for anyb ∈ U the differentialsdbf1, . . . , dbfl ∈ T ∗b E are linearly independent,
• the ideal of functions onU generated byf1, . . . , fl is preserved by the action of vector

fields fromD.

In this caseE′ is also an object ofINF with the distributionD|E′ . The numberl is called the
codimension of the subequationE′.

A pair (E,D) is said to beirreducible if E is connected as a topological space and there
is no subequationE′ ⊂ E of finite nonzero codimension.

Let E be the infinite prolongation of a system of PDEs. Thensubequations of E are
subequations of the pair (E, CE), andE is calledirreducible if the pair (E, CE) is irreducible.

Remark 2. The term ‘subequation’ is motivated by the fact that a pair (E, CE), as we agreed
above, is sometimes called an equation.

2.4. Coordinate description

Consider a bundleπ : E→ M. Letx1, . . . , xn be local coordinates inM andu1, . . . , ud

be local coordinates in fibres ofπ. For a symmetric multi-indexσ = i1, . . . , ik set

ujσ =
∂kuj

∂xi1, . . . , ∂xik
. (10)

These functions along withx1, . . . , xn form a system of local coordinates for the infinite-
dimensional spaceJ∞(π). The topology onJ∞(π) is the following. Choose a finite number
u
j1
σ1, . . . , u

jr
σr of coordinates(10)and consider the mapping

J∞(π)→ Cn+r, a �→ (x1(a), . . . , xn(a), u
j1
σ1

(a), . . . , ujrσr (a)).
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The preimages of open subsets ofCn+r, r ∈ Z+, under such mappings are by definition
open subsets ofJ∞(π) and form a base of the topology onJ∞(π). Admissible functions on
open subsets ofJ∞(π) may depend onx1, . . . , xn and a finite number of coordinates(10).
Below all functions are supposed to be admissible.

Thetotal derivative operators

Dxi =
∂

∂xi
+
∑
σ,j

u
j
σi

∂

∂u
j
σ

, i = 1, . . . , n, (11)

are commuting vector fields onJ∞(π) and span the Cartan distribution.
Consider a system of PDEs

Fα(xi, u
k, ujσ, . . .) = 0, α = 1, . . . , s, (12)

in the bundleπ. The basic idea of the described approach is to treat(12)not as differential
equations inuk, but as analytic equations in variables(10)andxi.

Thedifferential consequences of (12)are

Dxi1
. . . Dxir (Fα) = 0, ik = 1, . . . , n, α = 1, . . . , s, r = 0,1, . . . . (13)

The infinite prolongationE ⊂ J∞(π) of system(12)is distinguished by Eq.(13). The vector
fieldsDxi are tangent toE, and their restrictions toE will be denoted by the same symbol
Dxi . They span the Cartan distributionCE of E.

Example 2. Consider a scalar evolution equation in two independent variablesx, t

ut = F (x, t, u, u1, u2, . . . , up), uk = ∂ku

∂xk
, u = u0. (14)

Its infinite prolongation has the natural coordinatesx, t, uk, k ≥ 0, since using differential
consequences of(14) all t-derivatives are expressed in terms of these. The total derivative
operators are written in these coordinates as follows:

Dx = ∂

∂x
+
∑
j≥0

uj+1
∂

∂uj
, Dt = ∂

∂t
+
∑
j≥0

Djx(F )
∂

∂uj
.

2.5. Differential coverings

Definition 4. LetEbe an object ofINF endowed with a distributionD such that [D,D] ⊂ D.
A (differential) covering of (or over) the pair (E,D) is given by a bundle of finite rank

τ : Ẽ→ E (15)

and a distributionDτ on Ẽ such that

• [Dτ,Dτ ] ⊂ Dτ ,
• for eacha ∈ Ẽ the differentialτ∗ maps the space (Dτ)a ⊂ TaẼ isomorphically onto the

spaceDτ(a) ⊂ Tτ(a)E.
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An invertible mappingϕ : Ẽ→ Ẽ such thatτ ◦ ϕ = τ is called agauge transformation.
The covering given by the same bundleτ and the new distributionϕ∗(Dτ) on Ẽ is said to be
(gauge) equivalent to the initial covering.

Similarly, amorphism between two coveringsτi : Ei→ E, i = 1,2, over the same pair
(E,D) is a mappingϕ : E1→ E2 such thatτ1 = τ2 ◦ ϕ andϕ∗(Dτ1) ⊂ Dτ2.

A τ-vertical vector fieldX ∈ D(Ẽ) is called a (gauge) symmetry of τ if [X,Dτ ] ⊂ Dτ .
This means that the local flow ofX (if it exists) consists of automorphisms ofτ. The Lie
algebra of symmetries is denoted by Symτ.

Covering(15) is said to beirreducible if both pairs (E,D) and (̃E,Dτ) are irreducible.

Example 3. Let us show that usual topological coverings are a particular case of this
construction. LetM be a finite-dimensional manifold andD be the whole tangent bundle
of M. Coverings of rank 0 over (M,D) are just topological coveringsτ : M̃ → M, where
dimM̃ = dimM andDτ is the whole tangent bundle of̃M.

If the distribution onE is clearly fixed, we speak of coverings overE (without mentioning
the distribution).

Let nowE be the infinite prolongation of a system of PDEs(12). In this case we fixD to
be the Cartan distributionCE.

Let us describe a covering(15) in local coordinates. Recall that locallyCE is spanned by
Dxi . Therefore, locally there is a uniquen-tuple of vector fields

D̃xi ∈ Dτ, i = 1, . . . , n, (16)

on the manifold̃E such that

τ∗(D̃xi ) = Dxi, (17)

[D̃xi , D̃xj ] = 0, ∀ i, j = 1, . . . , n. (18)

Moreover, vector fields(16)span the distributionDτ .
If X ∈ Symτ then we have

[X, D̃xi ] = 0, i = 1, . . . , n. (19)

Below in this section we consider equations in two independent variablesx andt, i.e.,
n = 2. Locally the bundleτ is trivial

τ : E×W → E, dimW = m <∞. (20)

Letw1, . . . , wm be local coordinates inW.
From(17)we have

D̃x = Dx + A, D̃t = Dt + B, (21)

where

A =
m∑
j=1

aj
∂

∂wj
, B =

m∑
j=1

bj
∂

∂wj
(22)
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areτ-vertical vector fields onE×W . Condition(18) is written as

DxB −DtA+ [A,B] = 0, (23)

where

DxB =
m∑
j=1

Dx(b
j)

∂

∂wj
, DtA =

m∑
j=1

Dt(a
j)

∂

∂wj
.

A covering equivalent to the one given byA = B = 0 is calledtrivial.
The manifoldE×W is itself isomorphic to the infinite prolongation of the system that

consists of Eq.(12)and the following additional equations:

∂wj

∂x
= aj(x, t, wk, uiσ, . . .),

∂wj

∂t
= bj(x, t, wk, uiσ, . . .), j = 1, . . . , m. (24)

This overdetermined system is consistent modulo(12) if and only if (23) holds onE. The
vector fieldsDx + A, Dt + B are the restrictions of the total derivative operators toE×W .
That is, the distributionDτ is the Cartan distribution of this system.

Gauge transformations correspond to invertible changes of variables

x �→ x, t �→ t, uiσ �→ uiσ, wj �→ gj(x, t, wk, uiσ, . . .), j = 1, . . . , m, (25)

in (24). A covering is trivial if and only if it is obtained by such change of variables from
the trivial system

∂wj

∂x
= ∂wj

∂t
= 0, j = 1, . . . , m.

Therefore, classification of coverings overE up to local isomorphism is equivalent to
classification of consistent modulo(12) systems(24) up to locally invertible changes of
variables(25).

Example 4. Consider a covering of rank 1

∂w

∂x
= a(x, t, w, u, u1, . . . , uk),

∂w

∂t
= b(x, t, w, u, u1, . . . , uk) (26)

over the infinite prolongation of Eq.(14). After a gauge transformation

w �→ f (x, t, w, u, u1, . . . , ur),
∂f

∂w
�= 0,

system(26)changes to the following system:

∂w

∂x
= 1

∂f
∂w

(a(x, t, f, u, u1, . . . , uk)−Dxf ),

∂w

∂t
= 1

∂f
∂w

(b(x, t, f, u, u1, . . . , uk)−Dtf ), f = f (x, t, w, u, u1, . . . , ur),

which represents an equivalent to(26)covering.



S. Igonin / Journal of Geometry and Physics 56 (2006) 939–998 951

Recall that in the case of two independent variablesx, t a conserved current of E is a
pair of functions (f, g) onE satisfying

Dtf = Dxg. (27)

Two conserved currents (f1, g1) and (f2, g2) are calledequivalent if there is a functionh
such that

f2− f1 = Dx(h), g2− g1 = Dt(h). (28)

For a conserved current(27) the pair of vector fields

A = f (x, t, uiσ, . . .)
∂

∂w
, B = g(x, t, uiσ, . . .)

∂

∂w

satisfies(23)and determines a covering of rank 1.
Equivalent conserved currents(28) determine equivalent coverings. Indeed, the corre-

sponding gauge transformation isw �→ w+ h.

2.6. Coverings as transformations of PDEs

Consider two systems of PDEs

Fα

(
x, t, u1, . . . , ud1,

∂p+quj

∂xp∂tq
, . . .

)
= 0, α = 1, . . . , s1, (29)

Gα

(
x, t, v1, . . . , vd2,

∂p+qvj

∂xp∂tq
, . . .

)
= 0, α = 1, . . . , s2, (30)

and a mapping

uj = ϕj
(
x, t, v1, . . . , vd2,

∂p+qvl

∂xp∂tq
, . . .

)
, j = 1, . . . , d1, (31)

such that the following conditions hold:

(1) For each local solutionv1(x, t), . . . , vd2(x, t) of system(30) functions(31)constitute a
local solution of(29).

(2) For each local solutionu1(x, t), . . . , ud1(x, t) of (29) the system that consists of Eqs.
(30) and (31)is consistent and possesses locally a general solution

v1(x, t, c1, . . . , cm), . . . , vd2(x, t, c1, . . . , cm)

dependent on a finite number of complex parametersc1, . . . , cm.

Example 5. Miura transformation(2) satisfies these conditions withm = 1.
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Consider the following trivial bundles:

π : Cd1+2→ C2, (x, t, u1, . . . , ud1) �→ (x, t),

π̃ : Cd2+2→ C2, (x, t, v1, . . . , vd2) �→ (x, t),

and their infinite jet spacesJ∞(π) andJ∞(π̃).
Denote byDx, Dt andD̃x, D̃t the total derivative operators onJ∞(π) andJ∞(π̃) respec-

tively. One has

∂p+quj

∂xp∂tq
= DpxDqt (uj),

∂p+qvj

∂xp∂tq
= D̃px D̃qt (vj).

Formulas(31)suggest to consider the mapping

τ : J∞(π̃)→ J∞(π) (32)

defined as follows

τ∗(x) = x, τ∗(t) = t, τ∗(uj) = ϕj,

τ∗
(
∂p+quj

∂xp∂tq

)
= D̃px D̃qt (ϕj). (33)

Then we obtain

τ∗(D̃x) = Dx, τ∗(D̃t) = Dt. (34)

Let E ⊂ J∞(π) andẼ ⊂ J∞(π̃) be the infinite prolongations of systems(29) and (30)
respectively. Conditions (1) and (2) above need rigorous analytical explanation, which we
do not consider. Instead, following[1,8], we say that Conditions (1) and (2) are by definition
equivalent to the fact thatτ(Ẽ) = E and the mapping

τ|Ẽ : Ẽ→ E (35)

is a bundle of rankm. Then from(34)we obtain that(35) is a covering.
According to construction(24), every covering of a system of PDEs is locally isomorphic

to a covering of this form.

2.7. Actions of Lie algebras on manifolds

Let g be a Lie algebra overC. Recall that anaction of the Lie algebrag on a complex
manifold W is a homomorphismg→ D(W). For a ∈ W let eva : D(W)→ TaW be the
evaluation mapping. For an actionρ : g→ D(W) the subalgebra{v ∈ g |evaρ(v) = 0} is
called theisotropy subalgebra of the pointa.

An actionρ is said to betransitive if the mapping evaρ : g→ TaW is surjective for each
a ∈ W . An actionρ is calledfree if ker evaρ = 0 for anya ∈ W .

A bundleW → W ′ is called thequotient map with respect to an actionρ : g→ D(W)
if all vector fields fromρ(g) are tangent to the fibres and the induced action on each fibre is
transitive.
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A morphism from one actionρ1 : g→ D(W1) to another actionρ2 : g→ D(W2) is a
mappingψ : W1→ W2 such that

∀ a ∈ W1 ∀ v ∈ g ψ∗(evaρ1(v)) = evψ(a)ρ2(v). (36)

The following statement is obvious.

Lemma 1. Let ψ : W1→ W2 be a morphism of transitive actions ρi : g→ D(Wi), i =
1,2. Then ψ(W1) is open in W2.

LetG be a connected complex Lie group associated with a finite-dimensional Lie algebra
g. Forg ∈ G set

Lg : G→ G, a �→ ga, Rg : G→ G, a �→ ag.

A vector fieldX ∈ D(G) is said to beright invariant if

∀ g ∈ G (Rg)∗(X) = X, (37)

andX is said to beleft invariant if

∀ g ∈ G (Lg)∗(X) = X. (38)

Denote byDli , Dri ⊂ D(G) the subalgebras of left invariant and right invariant vector
fields respectively. It is well known that

Dli ∼= Dri ∼= g. (39)

and the actions of the algebrasDli , Dri on G are free and transitive.
By isomorphisms(39), we have the free transitive actionσ : g→ D(G) of g on G

by right invariant vector fields. LetH ⊂ G be a connected Lie subgroup andh ⊂ g be
the corresponding Lie subalgebra. Consider the quotient spaceG/H with the canonical
projectionp : G→ G/H .

Due to Eq.(37), all right invariant vector fields are mapped byp∗ to well-defined vector
fields onG/H . Consider the arising transitive action

σh = p∗ ◦ σ : g→ D(G/H)

of g onG/H . The following lemma is easy to prove.

Lemma 2. Let U be a connected open subset of G/H . Let X ∈ D(U) commute with all
vector fields from σh(g). Then there is V ∈ Dli such that X = p∗(V ).

And vice versa, if V ∈ Dli is projectable to G/H then p∗(V ) commutes with all vector
fields from σh(g). An element V ∈ Dli ∼= g is projectable to G/H if and only if [V, h] ⊂ h.

In particular, if U is a connected open subset of G then the algebra

{V ∈ D(U) | [V, σ(g)] = 0}

coincides with Dli ∼= g.
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Lemma 3. Let W be a connected finite-dimensional manifold. Suppose that an action
ρ : g→ D(W) is free and transitive. Then the Lie algebra

{V ∈ D(W) | [V, ρ(g)] = 0}

is isomorphic to g and acts on W freely and transitively as well.

Proof. It is well known that in this case the actionρ is locally isomorphic to the action
σ : g→ D(G). By Lemma 2, we obtain that for anya ∈ W there is a neighborhooda ∈
U ⊂ W such that

{V ∈ D(U) | [V, ρ(g)] = 0} ∼= g,
∀ b ∈ U ∀ v ∈ TbW ∃! V ∈ D(U) : evbV = v, [V, ρ(g)] = 0.

SinceW is connected, this implies the statement of the lemma.�

Lemma 4. Let g be a (possibly infinite-dimensional) Lie algebra,W1 andW2 be connected
finite-dimensional manifolds, and ψ : W1→ W2 be a morphism of transitive actions ρi :
g→ D(Wi), i = 1,2. Suppose that ψ is a bundle with connected fibres and the algebra

s = {V ∈ D(W1) |ψ∗(V ) = 0, [V, ρ1(g)] = 0}

acts freely and transitively on each fibre of ψ. Let h ⊂ g be the isotropy subalgebra of a
point a ∈ W2 with respect to the action ρ2. Then all vector fields from ρ1(h) are tangent to
the fibre F = ψ−1(a) ⊂ W1 and the image of the algebra ρ1(h) inD(F ) is isomorphic to s.

Proof. The fact that all vector fields fromρ1(h) are tangent toF is obvious. Denote byf the
image ofρ1(h) in D(F ). The algebra{V ∈ D(F ) | [V, s] = 0} includesf and is, byLemma
3, isomorphic tos. Since dimf ≥ dimF = dims, we obtain

f = {V ∈ D(F ) | [V, s] = 0} ∼= s. �

2.8. Zero-curvature representations

Let g be a Lie algebra overC. Let E be an open subset of the infinite prolongation of a
system of PDEs in two independent variablesx, t such thatDx, Dt are well defined onE.

A pair of functions

M,N : E→ g (40)

is called ag-valued zero-curvature representation (ZCR in short) if

Dx(N)−Dt(M)+ [M,N] = 0. (41)

We suppose that all coefficients of the vector-valued functions(40) are admissible (i.e.,
belong to the structure sheaf).
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Then each actionρ : g→ D(W) induces the covering structure in the bundleτ : E×
W → E given by

D̃x = Dx + ρ(M), D̃t = Dx + ρ(N).

Eq.(23) for A = ρ(M) andB = ρ(N) follows from(41).
For a morphism of actionsψ : W1→ W2 the mapping

id× ψ : E×W1→ E×W2

is a morphism of the corresponding coverings.

Example 6. Let g be a finite-dimensional Lie algebra. Clearly, ag-valued ZCR dependent
polynomially on a parameterλ can be treated as a ZCR with values in the infinite-
dimensional Lie algebrag⊗CC[λ]. Then by the above construction each action ofg⊗CC[λ]
determines a covering.

2.9. Translation-invariant coverings

In what follows we mainly considertranslation-invariant PDEs(12)such thatFα do not
depend on the independent variablesxi. In this case it is convenient to exclude the variables
xi from the set of coordinates onJ∞(π) andE. That is, admissible functions may depend on
(10), but not onxi. Besides, in this case we consider total derivative operators(11)without
the term∂/∂xi.

The obtained manifold and the obtained distribution on it are called thetranslation-
invariant infinite prolongation and thetranslation-invariant Cartan distribution of the
translation-invariant system(12) respectively. Differential coverings of the translation-
invariant infinite prolongation are calledtranslation-invariant coverings.

Assume that there are two independent variablesx, t. Then a differential covering(24)is
translation-invariant if and only ifaj, bj do not depend onx, t either. Making this restriction,
we in fact do not loose any coverings, since, according to[7], with arbitrary covering(24)
of rankm we can associate the following translation-invariant covering of rankm+ 2:

∂v1

∂x
= 1,

∂v2

∂x
= 0,

∂wj

∂x
= aj(v1, v2, wk, uiσ, . . .),

∂v1

∂t
= 0,

∂v2

∂t
= 1,

∂wj

∂t
= bj(v1, v2, wk, uiσ, . . .)

(we replacedx, t by v1, v2 in the right-hand side of(24)). The fibres of this covering have
the coordinatesv1, v2, w1, . . . , wm.

Example 7. Consider a translation-invariant evolution equation

ut = F (u, u1, u2, . . . , up), uk = ∂ku

∂xk
, u = u0. (42)
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Its translation-invariant infinite prolongation has the coordinatesuk, k ≥ 0. The total deriva-
tive operators are written in these coordinates as follows:

Dx =
∑
j≥0

uj+1
∂

∂uj
, (43)

Dt =
∑
j≥0

Djx(F )
∂

∂uj
(44)

and span the translation-invariant Cartan distribution.

Let us rewrite the translation-invariance condition in coordinate-free terms.
Recall that aconnection in a bundleπ : E→ M is given by a distributionD on E such

that for anya ∈ E the mappingπ∗ : Da→ Tπ(a)M is an isomorphism of vector spaces.
Then for each open subsetU ⊂ M we have the natural linear mapping

∇ : D(U)→ D(π−1(U))

that is uniquely defined by the following condition:

∀V ∈ D(U) ∇(V ) ∈ D, π∗(∇(V )) = V.

The connection is said to beflat if

∀V1, V2 ∈ D(U) ∇([V1, V2]) = [∇(V1),∇(V2)].

Consider the natural mapping

π∞,0 : J∞(π)→ E

arising from(7). Let Z be an open subset ofE. Recall [1,9,10] that for any vector field
X ∈ D(Z) there is a unique vector fieldS(X) ∈ D(π−1

∞,0(Z)) such that

[S(X), C] ⊂ C, (π∞,0)∗(S(X)) = X, (45)

whereC is the Cartan distribution onJ∞(π).
Fix a flat connection in the bundleπ. An equationE ⊂ J∞(π) is said to betranslation-

invariant (with respect to this flat connection) if for any vector fieldV on an open subset of
M the vector fieldS(∇(V )) is tangent toE.

Vector fields of the formS(∇(V )) span another distributionD′ of rank dimM onJ∞(π).
Let a ∈ M. The submanifoldE′ = E ∩ π−1∞ (a) is the translation-invariant infinite prolonga-
tion. To obtain the translation-invariant Cartan distributionCE′ on it, one projects the Cartan
distributionCE to E′ parallel to the distributionD′. The obtained distributionCE′ is involu-
tive, but may be singular at some points ofE′ (e.g., the pointsui = 0, i ≥ 1, inExample 7),
and we exclude these singular points from the translation-invariant infinite prolongation. It
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is clear from the next example that locally the structure of the pair (E′, CE′ ) does not depend
ona ∈ M.

Example 8. As in Section2.4, let

π : Cd+n→ Cn, (x1, . . . , xn, u
1, . . . , ud) �→ (x1, . . . , xn). (46)

Consider the flat connection given by∇(∂/∂xi) = ∂/∂xi. It is well known that locally any
flat connection is isomorphic to this one.

Since we haveS(∂/∂xi) = ∂/∂xi, an equationE ⊂ J∞(π) is translation-invariant with
respect to this flat connection if and only if it can be given by a system(12) such thatFα
do not depend onxi.

2.10. Wahlquist–Estabrook coverings

Consider a translation-invariant evolution Eq.(42) satisfying∂F/∂up �= 0. In order to
describe locally all its translation-invariant coverings, one must solve Eq.(23) for

A =
m∑
j=1

aj(w1, . . . , wm, u, . . . , uk)
∂

∂wj
,

B =
m∑
j=1

bj(w1, . . . , wm, u, . . . , uk)
∂

∂wj
, (47)

for arbitraryk, m ∈ Z+. If k is less than the orderp of (42) then the covering is said to be
of Wahlquist–Estabrook type.

Consider the following example.

Proposition 1 (Wahlquist and Estabrook[22], van Eck[20], Krasilshchik and Vinogradov
[8]). For the KdV equation

ut = u3+ u1u, ui = ∂iu

∂xi
, (48)

any Wahlquist–Estabrook covering

DxB −DtA+ [A,B] = 0, A = A(w1, . . . , wm, u, u1, u2),

B = B(w1, . . . , wm, u, u1, u2)

is of the form

A = X1+ 1
3uX2+ 1

6u
2X3, (49)

B = ( 1
3u2+ 1

6u
2)X2+ ( 1

9u
3− 1

6u
2
1+ 1

3uu2)X3−X4+ 1
3u[X1, [X1, X2]]

+ 1
18u

2[X2, [X1, X2]] + 1
3u1[X2, X1], (50)
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where the vector fields Xi depend only on w1, . . . , wm and are subject to the relations

[X1, X3] = [X2, X3] = [X1, X4] = [X2, [X2, [X2, X1]]] = 0, (51)

[X1, [X1, [X2, X1]]] = [X4, X2],

[X1, [X2, [X2, X1]]] = [X1, X2] + [X4, X3]. (52)

Remark 3. The KdV equation(48) differs from the one described in the introduction, but
one is obtained from the other by a suitable scaling transformationu �→ cu for somec ∈ C.

Let F be the free Lie algebra generated by the lettersX1, X2, X3, X4. Let L be the
quotient ofF over relations(51) and (52). Then formulas(49) and (50)determine a ZCR of
(48) with values inL such that every Wahlquist–Estabrook covering arises from an action
of L by the construction of Section2.8. The algebraL is called theWahlquist–Estabrook
prolongation algebra of (48).

A similar description of Wahlquist–Estabrook coverings is known for many Eqs.(42))
(see, e.g.,[2,20,8]).

Let us describe the algebraLmore explicitly. Below forq ∈ sl2(C) andf (λ) ∈ C[λ] we
write the element

q⊗ f (λ) ∈ sl2(C)⊗CC[λ]

simply asqf (λ).

Proposition 2 (van Eck[19,20]). The Lie algebra L is isomorphic to the direct sum of the
Lie algebra sl2(C)⊗CC[λ] and the five-dimensional Heisenberg algebra H. The algebra H
has a basis

r−3, r−1, r0, r1, r3

with the commutator table [r−1, r1] = [r3, r−3] = r0, the other commutators being zero.
The isomorphism is given by

X1 = r1− 1
2y + 1

2zλ,X2 = r−1+ z,X3 = r−3, X4 = r3− 1
2yλ+ 1

2zλ
2, (53)

where h, y, z is a basis of sl2 with the relations

[h, y] = 2y, [h, z] = −2z, [y, z] = h.

Remark 4. One of the main ideas of this paper is to introduce Lie algebras playing similar
role for coverings(23) and (47)with arbitraryk.

The set of coverings of the form(47) is invariant under gauge transformations of the
form

wi �→ f i(w1, . . . , wm, u, . . . , uk−p). (54)
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In order to define these Lie algebras, we find for coverings(23) and (47)a canonical
form with respect to the action of gauge transformations(54).

Since for Wahlquist–Estabrook coverings transformations(54)do not depend onui, i ≥
0, all Wahlquist–Estabrook coverings are automatically in the canonical form.

Coverings(23) and (47)with arbitraryk were also studied in[3]. However, gauge trans-
formations were not considered there. Because of this, the authors of[3] had to impose
some additional constraints on vector fields(47).

3. Analogs of the fundamental group for differential coverings

3.1. An instructive example

To motivate the next constructions, we present a description of some coverings of the
KdV equation

ut = u3+ u1u. (55)

The analogous description of all translation-invariant coverings of(55) will be given in
Section5.

The operatorsDx, Dt below are given by(43) and (44)with F = u3+ u1u.

Theorem 1. Any translation-invariant covering (23) of the form

A = A(w1, . . . , wm, u, u1, u2, u3), B = B(w1, . . . , wm, u, u1, u2, u3) (56)

is locally equivalent to a covering of the form

A = X1+ 1
3uX2+ 1

6u
2X3+ f1C, (57)

B = ( 1
3u2+ 1

6u
2)X2+ ( 1

9u
3− 1

6u
2
1+ 1

3uu2)X3−X4+ 1
3u[X1, [X1, X2]]

+ 1

18
u2[X2, [X1, X2]] + 1

3u1[X2, X1] + g1C, (58)

where the vector fields Xi, C depend only on w1, . . . , wm and satisfy

[C,Xi] = 0, i = 1,2,3,4, (59)

in addition to relations (51) and (52). Here (f1, g1) is a conserved current of (55)

f1 = u2
1− 1

3u
3, g1 = 2u1u3− u2

2− u2u2+ 2uu2
1− 1

4u
4, Dtf1 = Dxg1.

Proof. It is easy to obtain thatA does not depend onu2, u3 and is a polynomial of degree
2 in u1

A = u2
1A2(w1, . . . , wm, u)+ u1A1(w1, . . . , wm, u)+ A0(w1, . . . , wm, u). (60)

We want to get rid of the termu1A1 by switching to a locally gauge equivalent covering.
Namely, consider an arbitrary pointui = ai ∈ C, wj = wj0 ∈ C where vector fields(56)
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are defined. We will find a gauge transformation defined on a neighborhood of this point
that kills the termu1A1.

To this end, let

A1(w1, . . . , wm, u) =
∑
j

cj(w1, . . . , wm, u)
∂

∂wj
.

Consider the system of ordinary differential equations

d

du
f j(w1, . . . , wm, u) = cj(f 1, . . . , fm, u), j = 1, . . . , m,

dependent on the parametersw1, . . . , wm. Consider its local solution on a neighborhood of
the pointu = a0, w

j = wj0 with the initial conditionf j(w1, . . . , wm, a0) = wj. Then the
formulas

uk �→ uk, wj �→ f j(w1, . . . , wm, u), k ≥ 0, j = 1, . . . , m, (61)

define locally a gauge transformationϕ such that

ϕ∗(Dx + A) = Dx + A′, ϕ∗(Dt + B) = Dt + B′,

where the vector fieldA′ is of the form(60) without the linear inu1 term (compare with
Example 4).

Now it is straightforward to show that the vector fieldsA, B are of the form(57) and
(58)with the relations

[X2, X3] = [X1, X4] = [C,Xi] = 0, i = 1,2,3, [C,X4] + 1
6[X1, X3] = 0,

[C,X4] + 1
3[X1, X3] + 1

6[X3, [X1, [X1, X2]]] = 1
18[X2, [X2, [X2, X1]]] ,

[X3, [X2, [X1, X2]]] = 0, [X1, [X1, [X2, X1]]] = [X4, X2],

[X1, [X2, [X2, X1]]] = [X1, X2] + [X4, X3]. (62)

From these relations it follows that [X1, X3] and (ad3X2)(X1) commute withX1, X2.
Now applying ad2X2 to (62) we obtain (ad3X2)(X1) = 0, which implies(59), (51) and
(52). �

3.2. The definition of the fundamental algebras

Consider a system of PDEs in two independent variablesx, t. The results of this section
are applicable to the following two situations:

(1) The manifoldE is the infinite prolongation defined in Section2.3, andCE is the Cartan
distribution on it.
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(2) The system of PDEs is translation-invariant, the manifoldE is the translation-invariant
infinite prolongation defined in Section2.9, andCE is the translation-invariant Cartan
distribution.

However, all examples of this paper belong to the second situation.
Without loss of generality, we can assumeE to be connected. Moreover, we assume that

the total derivative operatorsDx, Dt are well defined onE. This is not a big restriction,
because most of our results are local and locally this is always the case.

Remark 5. In fact the mainDefinition 5 can be readily generalized for PDEs in any
number of independent variables. However, since all PDEs considered in this paper are in
two independent variables, for the sake of clarity we prefer to give this simplified version.

Remark 6. Below in this section we use the following notation. For an open subsetE′ of
E and a finite-dimensional manifoldW, the mapping

E′ ×W → E′ (63)

is always the projection to the first factor. For a functionf onE, its restriction toE′ is denoted
by the same symbolf.

According to Section2.5, a covering structure in the trivial bundle(63) is uniquely
determined by a pair of vector fieldsA, B ∈ D(E′ ×W) that are vertical with respect to
projection(63)and satisfy relation(23).

We have the natural embeddingD(W) ⊂ D(E′ ×W). A vector fieldX ∈ D(E′ ×W)
belongs toD(W) if and only if it is vertical with respect to(63) and its coefficients do not
depend on coordinates ofE.

Inspired byTheorem 1, let us give the following definition.

Definition 5. We say thatE possessesfundamental algebras if there are finite setsAk, Bk,
k ∈ Z+, of functions onE satisfying the relations

Ak ⊂ Ak+1, Bk ⊂ Bk+1 ∀ k (64)

such that for any connected open subsetE1 of E the following conditions hold:

(1) Letτ : Ẽ→ E1 be a covering ofE1. Then for any pointa ∈ Ẽ there are a neighborhood
a ∈ Ẽ1 ⊂ Ẽ and k ∈ N such that forE2 = τ(Ẽ1) ⊂ E the coveringτ|Ẽ1

: Ẽ1→ E2 is
isomorphic to a coveringE2×W → E2 of the followingcanonical form:

[Dx + A, Dt + B] = 0, (65)

A =
∑
f∈Ak

fMf , B =
∑
g∈Bk

gNg, (66)

Mf , Ng ∈ D(W). (67)
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(2) Any morphismϕ : E1×W1→ E1×W2 between two coverings of the form

E1×Wi→ E1, i = 1,2, Ai =
∑
f∈Ak

fMi
f , Bi =

∑
g∈Bk

gNig,

[Dx + Ai, Dt + Bi] = 0, Mi
f , N

i
g ∈ D(Wi), i = 1,2,

is of the formϕ = id× ψ, where

ψ : W1→ W2, ψ∗(M1
f ) = M2

f , ψ∗(N1
g ) = N2

g .

(3) LetX ∈ D(E1×W) be a symmetry of a coveringE1×W → E1 given by vector fields

Dx + A, Dt + B ∈ D(E1×W)

satisfying(65)–(67). ThenX ∈ D(W) and

[X,Mf ] = [X,Ng] = 0 ∀ f ∈ Ak,∀ g ∈ Bk.

(4) Consider the manifoldE1×W with the distribution spanned byDx + A,Dt + B of the
form (65)–(67)and letE′ be a subequation of it. Then locallyE′ is of the formE2×W ′,
whereE2 is an open subset ofE1 andW ′ is a submanifold ofW such that vector fields
(67)are tangent toW ′.

In particular,E1×W is irreducible if and only ifW is connected and the Lie algebra
generated by vector fields(67)acts onW transitively.

In this case fundamental algebrasfk are defined as follows. Letqk be the free Lie algebra
generated by the lettersMf , Ng for f ∈ Ak, g ∈ Bk. Let us treat(66) as functions onE
with values inqk. Consider the idealIk of qk generated by the elements

∑
g∈Bk

Dx(g)(a)Ng −
∑
f∈Ak

Dt(f )(a)Mf +
∑

f∈Ak,g∈Bk
f (a)g(a)[Mf ,Ng], a ∈ E,

and setfk = qk/Ik.
Then(66)becomes anfk-valued ZCR ofE. For an action

ρ : fk → D(W) (68)

denote byτ(ρ) the coveringE×W → E corresponding to(68) by the construction of
Section2.8.

From(64)we have the natural epimorphism

pk : qk → qk−1 (69)

that maps the generators

Mf , Ng, f ∈ Ak \Ak−1, g ∈ Bk \ Bk−1, (70)
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to zero. It is easily seen thatpk(Ik) ⊂ Ik−1. Therefore, epimorphisms(69) determine the
epimorphisms

· · · → fk → fk−1→ · · · → f1→ f0. (71)

Example 9. FromTheorem 1for the KdV equation(55)we can take

A1 = {1, u, u2, u3, u2
1},

B1 = {ui0ui11 ui22 ui33 | in ∈ Z+, 0 ≤ 2i0+ 3i1+ 4i2+ 5i3 ≤ 8}.
For example, in this case we have

Mu2
1
= −3Mu3 = 1

2Nu1u3 = −Nu2
2
= C,

Mu = Nu2 = 1
3X2, Nuu3 = Nu1u2 = 0.

The algebraf1 is isomorphic to the quotient of the free Lie algebra generated by the letters
X1, X2, X3, X4, C over relations(51), (52) and (59). Formulas(57) and (58)determine
a ZCR of(55) with values inf1 such that each covering of the form(56) is equivalent to a
covering determined by an action off1. The algebraf0 is isomorphic to the algebraL from
Section2.10.

Fork > 3, coverings of(55)of the form

A = A(w1, . . . , wm, u, u1, . . . , uk), B = B(w1, . . . , wm, u, u1, . . . , uk)

are determined in a similar way by actions of higher algebrasfk−2, which will be studied
in Section5.2.

Remark 7. Consider the identity coveringE→ E. It has canonical form(65)–(67)with
Mf = Ng = 0 andW equal to a point. From Condition (4) we see that any connected open
subset of the equationE itself must be irreducible.

Remark 8. Consider an action(68) and letl ≥ k. Consider the epimorphismϕ : fl → fk
from (71) and the actionρϕ : fl → D(W). By the construction of epimorphisms(71), we
haveτ(ρϕ) = τ(ρ).

Therefore, when we consider a finite number of coverings determined by actions

ρi : fki → D(Wi), i = 1, . . . , s,

we can assume that all the actions are defined on the same algebrafk, where

k = max{k1, . . . , ks}.

Below in this section we suppose everywhere thatE possesses fundamental algebras(71)
andE1 is a connected open subset ofE.
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Theorem 2. For any covering τ : Ẽ→ E1 each point a ∈ Ẽ lies in a locally unique irre-
ducible subequation Ẽa ⊂ Ẽ. The image τ(Ẽa) is open in E1, and τ|Ẽa is a covering.

Proof. It is sufficient to prove this statement locally. Then we can assume that one has
Ẽ = E1×W andτ = τ(ρ) for some actionρ : fk → D(W). Let

a = (q, z) ∈ E1×W, q ∈ E1, z ∈ W.

By Proposition 3, locally there is a unique submanifoldW ′ ⊂ W such thatz ∈ W ′, all
vector fields fromρ(fk) are tangent toW ′, and the induced action onW ′ is transitive. By
Condition (4) ofDefinition 5, the submanifold̃Ea = E×W ′ ⊂ Ẽ is the required irreducible
subequation. �

Proposition 3 (Nagano[13]). Let g be an arbitrary Lie algebra overC and ρ : g→ D(W)
be an action of g on a complex-analytic manifold W. Then for each point z ∈ W there
is submanifold z ∈ W ′ ⊂ W such that all vector fields from ρ(g) are tangent to W ′ and
the action of g on W ′ is transitive. The submanifold W ′ is locally unique and dimW ′ =
dim evz(ρ(g)).

Consider a coveringτ : Ẽ→ E1, whereẼ is connected. Condition (1) ofDefinition 5
determines locally an action offk on fibres ofτ. Due to Condition (2) these local actions
produce a well-defined global action

ρ(τ) : fk → D(Ẽ)

such thatτ∗ ◦ ρ(τ) = 0.

Theorem 3. The covering τ is irreducible if and only if the action ρ(τ) is transitive on
each fibre of τ.

Proof. It is sufficient to prove this locally, which is done similarly to the proof of
Theorem 2. �

Theorem 4. Consider two coverings τi : Ẽ
i→ E1, i = 1,2, and a mapping ϕ : Ẽ

1→ Ẽ2

such that the diagram

is commutative.
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(1) The mapping ϕ is a morphism of coverings if and only if it is a morphism of the actions
ρ(τ1) and ρ(τ2).

(2) If τ1 and τ2 are irreducible and ϕ is a morphism of coverings then ϕ(Ẽ
1
) is open in Ẽ

2
.

Proof. It is sufficient to prove both statements locally.

(1) This follows from Condition (2) ofDefinition 5.
(2) This follows from the previous statement andLemma 1. �

Remark 9. Recall that a covering of a connected finite-dimensional manifoldM is con-
nected if and only if the corresponding action ofπ1(M) is transitive.Theorem 3suggests that
in PDE geometry irreducible equations play the role of ‘connected’ objects. ThenTheorem
2 is the analog for PDEs of the decomposition into connected components of a topological
space.

3.3. Regular coverings and their symmetry algebras

In the present form the analogy of(71) with the topological fundamental group is not
sufficiently helpful, because canonical form(66)and the vector fieldsMf , Ng ∈ D(W) have
no invariant (coordinate-free) meaning. In order to recover algebrasfk in an invariant way,
recall that the topological fundamental group can be expressed in terms of automorphism
groups of coverings. Studying differential coverings, it is more convenient to consider
infinitesimal automorphisms, i.e., symmetries.

From Condition 3 ofDefinition 5, for each actionρ : fk → D(W) we obtain

Symτ(ρ) = {v ∈ D(W) | [v, ρ(fk)] = 0}. (72)

Recall that a connected topological coveringM̃ → M is said to beregular if the action
of its automorphism group oñM is free and transitive on each fibre. Similarly, we call an
irreducible differential coveringτ : Ẽ→ E regular if the action onẼ of the algebra Symτ
is free and transitive on each fibre ofτ. In particular,τ is the quotient map with respect to
this action, and dim Symτ = rankτ.

Theorem 5. A covering τ : Ẽ→ E1 is regular if and only if the action on Ẽ of the subalgebra
ρ(τ)(fk) ⊂ D(Ẽ) is free and transitive on each fibre of τ. In this case one has dimρ(τ)(fk) =
rankτ and Symτ ∼= ρ(τ)(fk).

Proof. It is sufficient to prove this locally, and the local version follows from(72) and
Lemma 3. �

Each ideali of fk with codimi <∞ determines a regular covering as follows. Consider
the canonical epimorphismψ : fk → fk/i. Let σ : fk/i→ D(G) be the natural action by
right invariant vector fields on the simply connected Lie groupG whose Lie algebra is
the finite-dimensional algebrafk/i. For any open subsetU ⊂ G we have the transitive
actionσψ : fk → D(U). By Theorem 5, the corresponding coveringτ(σψ) is regular, and
every regular covering is locally isomorphic to a covering of this form. ByRemark 8,
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if in ⊂ fn, n ≥ k, is the preimage ofi under epimorphism(71) then fn/in ∼= fk/i and the
corresponding regular coverings are also isomorphic. Leti1, i2 ⊂ fk be two ideals of finite
codimension. Consider the simply connected Lie groupsG1, G2 associated with the Lie
algebrasfk/i1, fk/i2. LetUi ⊂ Gi, i = 1,2, be connected open subsets.

Suppose that the corresponding regular coverings are connected by a morphismϕ

From Condition 2 ofDefinition 5it follows that i1 ⊂ i2 andϕ = id× ψ, whereψ : U1→
U2 is a morphism of actions offk. By Theorem 5, we have Symτi ∼= fk/ii, i = 1,2. The
mapping

ϕ : E1× U1→ ϕ(E1× U1) = E1× ψ(U1)

is the quotient mapping with respect to the action of the subalgebrai2/i1 ⊂ Symτ1 on the
manifoldE1× U1.

Similarly toTheorem 4, this local description of regular coverings and morphisms con-
necting them implies the following global result.

Theorem 6. Consider two regular coverings τi : Ẽ
i→ E1, i = 1,2, and let

be a morphism of them. Then there is k ∈ N and two ideals i1, i2 of fk of finite codimension
such that

• one has

Symτi = fk/ii, i = 1,2, (73)

• we have i1 ⊂ i2, the subset ϕ(Ẽ
1
) is open in Ẽ

2
, and the mapping ϕ : Ẽ

1→ ϕ(Ẽ
1
) is the

quotient mapping with respect to the action of the subalgebra i2/i1 ⊂ Symτ1 on the

manifold Ẽ
1
,

• the differential ϕ∗ of ϕ induces an epimorphism of algebras Symτ1→ Symτ2. In terms
of isomorphisms (73) it is the natural epimorphism fk/i1→ fk/i2 corresponding to the
inclusion i1 ⊂ i2.

In contrast to fundamental algebras(71), the system of symmetry algebras of regular
coverings is a coordinate-free canonical invariant of a system of PDEs, since symmetry alge-
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bras are coordinate-independent objects. Thus we recover in an invariant way not algebras
(71) themselves, but all their finite-dimensional quotients.

3.4. Quasi-finite Lie algebras

We present here some results on Lie algebras.

Definition 6. A Lie algebrag is said to bequasi-finite if for any subalgebrah ⊂ g of finite
codimension there is an ideal ofg that is of finite codimension and is contained inh.

Theorem 7. Let g be a quasi-finite algebra. Then for any transitive action ρ : g→ D(W)
on a connected finite-dimensional manifold W the algebra ρ(g) is finite-dimensional.

Proof. Let a ∈ W andh ⊂ g be the isotropy subalgebra ofa. Sinceg is quasi-finite and
codimh = dimW <∞, there is an ideali of g such thati ⊂ h and codimi <∞. It is well
known that in the complex-analytic situation the imageρ(h) of the isotropy subalgebra
cannot contain any nontrivial ideal ofρ(g). Therefore,ρ(i) = 0 and

dimρ(g) ≤ codimi <∞. �

Theorem 8. Let g be a quasi-finite Lie algebra and ρ : g̃→ g be an epimorphism such
that

[ker ρ, g̃] = 0 (74)

(that is, g̃ is a central extension of g). Then g̃ is also quasi-finite.

Proof. Let h ⊂ g̃ be a subalgebra of finite codimension. Clearly, the subset

h1 = {a ∈ h|[g̃, a] ⊂ h} (75)

is also a subalgebra of finite codimension. By assumption, there is an ideali of g that is of
finite codimension and is contained inρ(h1).

The subspaceρ−1(i) ∩ h is of finite codimension and is contained inh. Let us prove that
ρ−1(i) ∩ h is an ideal of̃g.

Let a ∈ ρ−1(i) ∩ h andv ∈ g̃. Thena = h+ z, whereh ∈ h1 andz ∈ ker ρ. Combining
(74) and (75), we obtain [v, a] ∈ h. Besides, sinceρ−1(i) is an ideal of̃g, we have [v, a] ∈
ρ−1(i). Therefore, [v, a] ∈ ρ−1(i) ∩ h. �

Let g be a Lie algebra overC andA be a commutative associative algebra overC. Then
the spaceg⊗C A has the following natural Lie algebra structure:

[g1⊗ a1, g2⊗ a2] = [g1, g2] ⊗ a1a2, g1, g2 ∈ g, a1, a2 ∈ A. (76)

Theorem 9. If g is finite-dimensional and semisimple then the Lie algebra g⊗C A is
quasi-finite.
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Proof. Let h ⊂ g⊗C A be a subalgebra of finite codimension. Then the subspace

Z = {f ∈ A | g⊗ f ⊂ h} (77)

is of finite codimension inA. Since [g, g] = g, the subspaceZ is a subring ofA. The
subspaceZ′ = {f ∈ Z | fA ⊂ Z} is of finite codimension and is an ideal of the ringA.
Therefore, the subspaceg⊗ Z′ is an ideal ofg⊗A of finite codimension, and from(77)
we haveg⊗ Z′ ⊂ h. �

3.5. Local structure of irreducible coverings

Below we suppose that algebras(71)are quasi-finite.
Consider a subalgebrah ⊂ fk of finite codimension. Leti(h) be the maximal ideal offk

that is contained inh. Sincefk is quasi-finite, we have codimi(h) <∞.
Let G be the simply connected Lie group whose Lie algebra isfk/i(h) andH ⊂ G

be the connected Lie subgroup whose Lie subalgebra ish/i(h). According to Section2.7,
the algebrafk acts onG by right invariant vector fields, which are projected also to the
quotient spaceG/H . Denote byσ(fk, h) the arising transitive action offk on the manifold
W(fk, h) = G/H . We have kerσ(fk, h) = i(h).

Remark 10. Let G be a Lie group associated with a Lie algebrag. Generally, not for every
subalgebrah ⊂ g there is a Lie subgroup whose Lie subalgebra ish. However, for us it is
sufficient to consider the local Lie subgroup, which always exists. In this case the symbol
G/H denotes the quotient space not of the whole groupG, but of some neighborhood of
the unity element.

As above, letE1 be a connected open subset ofE. Consider the manifoldE1(fk, h) =
E1×W(fk, h) and the covering

τ(fk, h) : E1(fk, h)→ E1

corresponding to the actionσ(fk, h) of fk.

Theorem 10. The following statements hold.

(1) Every irreducible covering τ of E1 is locally isomorphic to a covering τ(fk, h) for some
k ∈ N and h ⊂ fk.

(2) We have

Symτ(fk, h) ∼= n(h)/h, (78)

where

n(h) = {v ∈ fk | [v, h] ⊂ h}. (79)

(3) The covering τ(fk, h) is regular if and only if h is an ideal of fk.
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Proof.

(1) By Conditions 1 and 4 ofDefinition 5, locally we haveτ = τ(ρ) for some transitive
actionρ : fk → D(W). Leta ∈ W and consider the isotropy subalgebrah ⊂ fk of a. By
Theorem 7, the actionsρ andσ(fk, h) are locally isomorphic. Then the coveringsτ(ρ)
andτ(fk, h) are locally isomorphic as well.

(2) Formulas(78) and (79)follow from formula(72)andLemma 2.
(3) This follows fromTheorem 5. �

Recall that for any connected topological coveringτ : M̃ → M there is a commutative
diagram of coverings

(80)

wherer is regular andp is the quotient mapping with respect to the action of some automor-
phism subgroup ofr. Let us construct an analog of diagram(80) for differential coverings.

Theorem 11. Any irreducible covering τ : Ẽ→ E1 is locally included in a commutative
diagram of irreducible coverings

such that the following assertions hold.

(1) The covering r is regular.
(2) The covering p is the quotient morphism with respect to the action on E′ of some

subalgebra h of Symr.
(3) The algebra Symτ coincides with the quotient n/h, where

n = {v ∈ Symr | [v, h] ⊂ h},

and the action of n/h on Ẽ is induced by the action of n on E′.

Proof. By Theorem 10 (1), it is sufficient to prove the statements forτ = τ(fk, h1), where
h1 is a subalgebra offk of finite codimension.

Recall thati(h1) is the maximal ideal offk that is contained inh1. By Theorem 10 (3),
the coveringr = τ(fk, i(h1)) is regular. The inclusion of Lie algebras

i(h1) ⊂ h1 ⊂ fk



970 S. Igonin / Journal of Geometry and Physics 56 (2006) 939–998

determines a surjective morphism

W(fk, i(h1))→ W(fk, h1)

of actions offk, which determines the surjective morphism

p : E1(fk, i(h1))→ E1(fk, h1), τ(fk, h1) ◦ p = τ(fk, i(h1)),

of the corresponding coverings.
By formulas(78) and (79), one has Symr = fk/i(h1). By construction, the morphism

p is the quotient map with respect to the action ofh = h1/i(h1) ⊂ Symr on the manifold
E1(fk, i(h1)). Finally, the last statement of the theorem follows from formulas(78) and
(79). �

For a subalgebrah of fk of finite codimension, denote byhl the preimage ofh in fl, l ≥ k,
under epimorphisms(71). By Remark 8, one obtains

E1(fl, hl) ∼= E1(fk, h), τ(fl, hl) ∼= τ(fk, h) ∀ l ≥ k.

If h̃ ⊂ hl is a subalgebra of finite codimension then we have the natural surjective mor-
phismW(fl, h̃)→ W(fl, hl) of actions offl, which determines a covering

τ(h, h̃) : E1(fl, h̃)→ E1(fl, hl) ∼= E1(fk, h).

Let i be an ideal ofhl with codimi <∞ (but not necessarily an ideal offl). By formulas
(78) and (79), the covering

τ(h, i) : E1(fl, i)→ E1(fk, h) (81)

is regular and Symτ(h, i) ∼= hl/i. The following theorem shows that locally every regular
covering ofE1(fk, h) is of this form.

Theorem 12. Consider an irreducible covering τ : Ẽ→ E1 and the corresponding action
ρ(τ) : fk → D(Ẽ). Let a ∈ Ẽ and h ⊂ fk be the isotropy subalgebra of a.

Then for any connected neighborhood Ẽ
′ ⊂ Ẽ of a the symmetry algebra of any regular

covering over Ẽ
′

is isomorphic to a finite-dimensional quotient of hl for some l ≥ k.
And vice versa, for any l ≥ k and any ideal i of hl of finite codimension there is a regular

covering τ′ over a neighborhood of a such that Symτ′ = hl/i.

Proof. Let τ′ : E′′ → Ẽ′ be a regular covering. Consider the connected open subsetE2 =
τ(Ẽ
′
) of E1 and the commutative diagram of coverings
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Since the question is essentially local, we can assume that the above diagram is of the form

whereρi : fl → D(Wi), i = 1,2, are transitive actions for somel ≥ k andψ : W1→ W2 is
a morphism of actions. The pointa is of the forma = (q, z), q ∈ E2, z ∈ W2. The algebra
hl is the isotropy algebra ofz with respect to the actionρ2. Then the first statement of the
theorem follows fromLemma 4for g = fl.

The second statement of the theorem follows from construction(81). �
This theorem is the analog of the fact that for a connected topological coveringM̃ → M

one hasπ1(M̃) ⊂ π1(M).
Sinceg in Lemma 4is allowed to be infinite-dimensional, the first statement ofTheorem

12holds even if algebras(71)are not quasi-finite.

Theorem 13. In the notation of Theorem 12, the symmetry algebra of any regular covering
over Ẽ

′
is isomorphic to a finite-dimensional quotient of hl for some l ≥ k even if the

fundamental algebras are not quasi-finite.

3.6. Necessary conditions for existence of Bäcklund transformations

Consider two systems of PDEs

Ei =
{
Fiα

(
x, t, ui1, . . . , uidi ,

∂p+quij

∂xp∂tq
, . . .

)
= 0, α = 1, . . . , si

}
, i = 1,2. (82)

A Bäcklund transformation betweenE1 andE2 is given by another system

Fα

(
x, t, v1, . . . , vd,

∂p+qvj

∂xp∂tq
, . . .

)
= 0, α = 1, . . . , s. (83)

and two mappings

uij = ϕij
(
x, t, v1, . . . , vd,

∂p+qvl

∂xp∂tq
, . . .

)
, j = 1, . . . , di, i = 1,2, (84)

such that for eachi = 1,2 one has

• for each local solutionv1(x, t), . . . , vd(x, t) of (83) functions(84) form a local solution
of (82),

• for each local solutionui1(x, t), . . . , uidi (x, t) of (82) the system that consists of Eqs.
(83) and (84)is consistent and possesses locally a general solution

v1(x, t, c1, . . . , cri ), . . . , v
d(x, t, c1, . . . , cri )

dependent on a finite number of complex parametersc1, . . . , cri .
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Similarly to Section2.6, these conditions mean by definition that the infinite prolongation
Ẽ of (83)covers bothE1 andE2

(85)

where the coveringτi is of rankri. We allowEi to be not the whole infinite prolongation,
but some nonempty open subset of it.

If systems(82) are translation-invariant then we can make(83) translation-invariant as
well using the trick from Section2.9: replacex, t in Fα andϕij by the new dependent
variablesw1, w2 respectively and add to(83) the following equations:

∂w1

∂x
= ∂w2

∂t
= 1,

∂w1

∂t
= ∂w2

∂x
= 0.

After this substitution coverings(85)become translation-invariant.

Example 10. Consider two different coverings from the modified KdV equation to the KdV
equation

This diagram presents a Bäcklund auto-transformation of the KdV equation. See, e.g,[15,16]
for more examples of B̈acklund transformations.

Theorem 14. Suppose that two systems Ei, i = 1,2, possess fundamental algebras

· · · → fik+1→ fik → · · · → fi1→ fi0, i = 1,2, (86)

and the algebras f1k are quasi-finite. Let g be a finite-dimensional Lie algebra. Suppose that
for any k1, k2 ∈ Z+ and any subalgebras

hi ⊂ fiki , codimhi <∞, i = 1,2, (87)

there is an epimorphism h1→ g, but there is no epimorphism h2→ g. Then there is no
Bäcklund transformation between E1 andE2.

Proof. Suppose that there is a Bäcklund transformation. By the above construction, it
determines a diagram(85)of coverings. Leta ∈ Ẽ. By Theorem 2, locally there is a unique
irreducible subequatioñEa ⊂ Ẽ that containsa. The subsetτi(Ẽa) is open inEi, and the
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coverings

τi|Ẽa : Ẽa→ τi(Ẽa), i = 1,2,

are irreducible. Consider the action

ρ(τ1|Ẽa ) : f1k → D(Ẽa)

and leth1 ⊂ f1k be the isotropy subalgebra ofa. By Theorem 12, an epimorphismh1→ g
implies that over a connected neighborhood ofa ∈ Ẽa there is a regular covering with
symmetry algebra equal tog. ApplyingTheorem 13to this regular covering and the covering
τ2|Ẽa , we obtain thatg is isomorphic to a quotient of some subalgebrah2 of f2l of finite
codimension. Thus we get a contradiction.�

4. Coverings of scalar evolution equations

In this section we prove some technical results, which will be needed in Sections4 and
5. Consider a translation-invariant evolution equation

ut = F (u, u1, u2, . . . , up),
∂F

∂up
�= 0, ui = ∂iu

∂xi
, u = u0. (88)

Let E be a connected open subset of the translation-invariant infinite prolongation of this
equation described inExample 7.

Let W be a connected open subset ofCm with coordinatesw1, . . . , wm and

ui = ai ∈ C, i = 0,1, . . . , (89)

be a point ofE. Consider a coveringE×W → E given by vector fields

A =
m∑
j=1

aj(w1, . . . , wm, u, . . . , uk)
∂

∂wj
,

B =
m∑
j=1

bj(w1, . . . , wm, u, . . . , uk)
∂

∂wj
, DxB −DtA+ [A,B] = 0. (90)

Below we sometimes omit the dependence on the coordinateswi in vector fields onE×W .

Remark 11. Below in this section we say thatlocally there is a gauge transformation with
certain properties if for anyw ∈ W a gauge transformation with these properties exists on
a neighborhood of the point (a,w) ∈ E×W , wherea is the fixed point(89)of E.

Lemma 5. We have

∂A

∂us
= 0 ∀ s > k − p+ 1. (91)
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Moreover, locally there is a gauge transformation

wi �→ f i(w1, . . . , wm, u, . . . , uk−p), i = 1, . . . , m,

such that the transformed vector field Dx + A satisfies for all s ≥ 1

∂A

∂us
(u, . . . , us−1, as, as+1, . . . , ak) = 0 ∀ u, . . . , us−1. (92)

Proof. Differentiating Eq.(90) with respect tous for s > k and using the form(43) and
(44)of Dx andDt , one immediately obtains(91).

Now suppose that(92)holds for alls > n, where 0< n ≤ k − p+ 1. It easily seen that
this property is preserved by any gauge transformation of the form

wi �→ f i(w1, . . . , wm, u, . . . , un−1). (93)

By induction onk − n, it remains to find a gauge transformation(93) such that the
transformed vector fieldDx + A satisfies(92) for s = n. Let

∂A

∂un
(u, . . . , un−1, an, an+1, . . . , ak) =

∑
j

cj(w1, . . . , wm, u, . . . , un−1)
∂

∂wj
.

Similarly to the proof ofTheorem 1, consider the system of ordinary differential equations

d

dun−1
f j(w1, . . . , wm, u, . . . , un−1)

= cj(f 1, . . . , fm, u, . . . , un−1), j = 1, . . . , m,

dependent on the parametersw1, . . . , wm andu, . . . , un−2. Its local solution with the initial
condition

f j(w1, . . . , wm, u, . . . , un−2, an−1) = wj

determines the required transformation(93). �

Lemma 6. Consider two coverings

DxBi −DtAi + [Ai, Bi] = 0, Ai =
mi∑
j=1

a
j
i (w

1
i , . . . , w

mi
i , u, . . . , uki )

∂

∂w
j
i

,

Bi =
mi∑
j=1

b
j
i (w

1
i , . . . , w

mi
i , u, . . . , uki )

∂

∂w
j
i

, i = 1,2,

such that both A1 and A2 satisfy (92) for all s ≥ 1 and some point (89). Let

w
j
2 = ϕj(w1

1, . . . , w
m1
1 , u, u1, . . .), j = 1, . . . , m2, (94)
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determine a morphism of these coverings, i.e.,

(Dx + A1)ϕj = aj2(ϕ1, . . . , ϕm2, u, . . . , uk2),

(Dt + B1)ϕj = bj2(ϕ1, . . . , ϕm2, u, . . . , uk2) (95)

for all j = 1, . . . , m. Then functions (94) do not actually depend on any ui, i ≥ 0.

Proof. Let r ≥ 0 be the maximal integer such that at least one of functions(94) depends
nontrivially on ur. Differentiate(95) with respect tour+1 and substituteui = ai for i ≥
r + 1. Taking into account(92)for s = r + 1, we obtain that the right-hand side is zero, while
on the left-hand side we get∂ϕj/∂ur. Therefore,∂ϕj/∂ur = 0 for all j, which contradicts
to our assumption. �

Lemma 7. Consider covering (90) satisfying (92) for all s ≥ 1 and let

S =
m∑
j=1

sj(w1, . . . , wm, u, u1, . . .)
∂

∂wj

be a symmetry of it. Then S does not actually depend on any ui, i ≥ 0.

Proof. Analyzing the equation [Dx + A, S] = 0 from(19), this is proved similarly to the
previous lemma. �

Lemma 8. Consider covering (90)satisfying (92) for all s ≥ 1. Let E′ be a subequation of
E×W . Then locally E′ is of the form E1×W ′, where E1 is an open subset of E andW ′ is a
submanifold of W such that all vector fields

{A(u, . . . , uk), B(u, . . . , uk) ∈ D(W) | u, . . . , uk ∈ C}

are tangent to W ′.

Proof. According toDefinition 3, a subequation of codimensionl is given by functions

fi(w
1, . . . , wm, u, u1, . . .), i = 1, . . . , l,

defined on an open subsetU ⊂ E×W such that

• f1(c) = · · · = fl(c) = 0 for somec ∈ U,
• the differentials

dbfi ∈ T ∗b (E×W), i = 1, . . . , l,

are linearly independent for eachb ∈ U,
• the idealI of functions onU generated byf1, . . . , fl is preserved by the action of the

vector fieldsDx + A, Dt + B.
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Let z ∈ W be the image ofc under the projectionE×W → W . To prove the lemma, it is
sufficient to find a set of functions

gα(w1, . . . , wm), α ∈ Λ, (96)

defined on a neighborhood ofz such that the ideal of functions on a neighborhoodU ′ ⊂ U
of c generated by functions(96)coincides withI|U ′ .

Let r be the maximal integer such that at least one of the functionsf1, . . . , fl depends
nontrivially on ur. Note thatfi are defined on an open subsetV of Cr+1×W with the
coordinatesu0, . . . , ur, w

1, . . . , wm, the subset

M = {q ∈ V | f1(q) = · · · = fl(q) = 0}

is a submanifold of codimensionl in V, andI|V coincides with the ideal of functions on
V that vanish onM. Thus we essentially have a question of finite-dimensional complex
analysis.

Since

∂

∂ur+1
(I) ⊂ I, (Dx + A)(I) ⊂ I,

we have

∂

∂ur+1
((Dx + A)(fi)) = ∂fi

∂ur
+ ∂A

∂ur+1
(fi) ∈ I. (97)

Substitutingui = ai, i ≥ r + 1, to (97), from (92) for s = r + 1 we obtain∂fi/∂ur ∈ I.
Therefore, the vector field∂/∂ur is tangent toM, which allows to generateI on some
neighborhood ofc by functions that do not depend onui for i ≥ r. Proceeding by induction
on r, one completes the proof.�

Applying this lemma to the identity coveringE→ E, we obtain the following.

Theorem 15. Any connected open subset of the translation-invariant infinite prolongation
of any evolution Eq. (88) is irreducible.

Let us introduce some auxiliary notions.

Definition 7. For eachi ∈ Z+, letVi be a connected open subset ofC such that for all but
a finite number ofi we haveVi = C. Set

D = {(u0, u1, . . . , ui, . . .) | ui ∈ Vi}.

LetP be an algebra of functions onD such that eachf ∈ P is a complex-analytic function
dependent on a finite number of the variablesui, i ≥ 0. The algebraP is said to beperfect
if for each functionf (u0, . . . , ur) ∈ P and anyi ∈ Z+ the following conditions hold:
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(1) One has∂f/∂ui ∈ P.
(2) There isg(u0, . . . , ur) ∈ P such that∂g/∂ui = f .
(3) For anys < r and any fixed numbersai ∈ Vi, i ≥ s, we have

f (u0, . . . , us−1, as, as+1, . . . , ar) ∈ P.

(4) For allj ≥ 1 we haveuj ∈ P.

Then each functionf ∈ P is also calledperfect.

Example 11. LetVi = C andP be the algebra of polynomials inui, i ≥ 0. Evidently, the
algebraP is perfect.

Fix open subsetsVi ⊂ C satisfying the assumptions ofDefinition 7and a perfect algebra
P.

Definition 8. Consider a vector field

A =
m∑
j=1

aj(w1, . . . , wm, u, u1, . . . , uk)
∂

∂wj
(98)

defined on an open subset ofW × V0× · · · × Vk.
A vector field

S =
m∑
j=1

sj(w1, . . . , wm)
∂

∂wj
(99)

is said to be1-primitive (with respect to A) if [ S,A] = 0. Now by induction onq ∈ N a
vector field(99)is calledq-primitive (with respect to A andP) if the commutator [S,A] can
be presented as a sum

∑N
j=1 fjSj, whereSj are (q− 1)-primitive fields andfj are perfect

functions. In particular, one has (adqA)(S) = 0.
A vector field

S =
m∑
j=1

sj(w1, . . . , wm, u, u1, . . .)
∂

∂wj
(100)

is said to beprimitive (without any prefix) if one hasS =∑N
j=1 fjSj, wherefj are perfect

functions andSj areq-primitive vector fields for someq.

Remark 12. Below all primitive vector fields are primitive with respect toA andP, where
P is a fixed perfect algebra andA arises from a covering(90).

Evidently, primitive vector fields form a module over the algebraP.

Lemma 9. Consider an arbitrary vector field (100)defined on a neighborhood of the point
ui = ai ∈ Vi, i ≥ 0. Consider a covering (90) satisfying (92) for all s ≥ 1.
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(1) If

∂

∂ui
(Dx(S)+ [A, S]) = 0 ∀i > 0 (101)

then ∂S/∂ui = 0 for all i ≥ 0.
(2) If Dx(S)+ [A, S] is primitive then S is primitive.
(3) If S is primitive and the function F in (88) is perfect then [B, S] is primitive.

Proof.

(1) Let r be the maximal integer such that∂S/∂ur �= 0. From(92) for s = r + 1 we have

∂

∂ur+1
(Dx(S)+ [A, S])(u, . . . , ur, ar+1, . . . , ak) = ∂S

∂ur
. (102)

Combining this with(101)for i = r + 1, we obtain∂S/∂ur = 0.
(2) Again let r be the maximal integer such that∂S/∂ur �= 0. Then(102) holds. Since

Dx(S)+ [A, S] is primitive, vector field(102) is also primitive, by the properties of
perfect functions. Therefore, by Condition (2) ofDefinition 7, there is a primitive field
S′ such that̃S = S − S′ does not depend onui, i ≥ r. ThenDx(S̃)+ [A, S̃] is primitive,
and by induction onr one completes the proof.

(3) Applying adS to (90), we obtain

Dx([S,B]) + [A, [S,B]] = [S,DtA] − [[S,A], B]. (103)

By assumption, for someq one has

S =
∑
j

fjSj, fj are perfect, Sj are q-primitive. (104)

Let us prove that [S,B] is primitive by induction onq. For q = 1 the right-hand side of
(103)is zero. Applying Part 1 of this lemma to the vector field [S,B], we obtain that [S,B]
is 1-primitive.

Now assume that the statement holds forq− 1. Consider an arbitrary vector fieldS
satisfying(104). Let us prove that [S,B] is primitive.

By formula(44), we have

[S,DtA] =
k∑
j=0

Djx(F )

[
S,

∂

∂uj
A

]
. (105)

SinceF is perfect, the functionsDjx(F ) are also perfect. Besides, for any primitiveX the
vector fields [X, ∂A/∂uj] are also primitive for allj. Therefore(105)is primitive.

Since [S,A] is a linear combination of (q− 1)-primitive fields, the vector field [[S,A], B]
is also primitive by the induction assumption. Thus the right-hand side of(103)is primitive
and we can apply Part (2) of this lemma to [S,B]. �
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5. Coverings of the KdV equation

In this section we return to the KdV equation

ut = u3+ u1u. (106)

Our final goal here isTheorem 17.

5.1. The canonical form of coverings

Theorem 16. For any covering of Eq.((106))

DxB −DtA+ [A,B] = 0, A = A(u, u1, . . . , uk), B = B(u, u1, . . . , uk) (107)

(we omit the dependence on fibre coordinates wj) locally there is an equivalent covering
such that A, B are polynomial in ui and A satisfies (92) for all s ≥ 1 and ai = 0, i ≥ 1.

Proof. Consider an arbitrary pointui = ai ∈ C, wj = wj0 ∈ C where the vector fields
A and B are defined. All local gauge transformations in this proof will be defined on
a neighborhood of this point. ByLemma 5, we can assume that(92) holds for all
s ≥ 1. �

Remark 13. It would be most convenient to takeai = 0 from the beginning. However,
since we consider coverings over arbitrary open subsets of the translation-invariant infinite
prolongation of(106), we do not know in advance whetherA, B are defined around this
point. We will show by induction that after a suitable gauge transformation the vector fields
A, B become polynomial inui and, therefore, are uniquely extended to the whole space of
variablesu, . . . , uk.

To clarify further arguments, let us first determine the form ofA, B with respect to
the highest derivativesui, i ≥ k − 3. A straightforward analysis of Eq.(107) shows that
A does not depend onuk, uk−1 and is a polynomial of degree 2 inuk−2, while B is
polynomial inuk, uk−1, uk−2. Therefore, following the strategy ofRemark 13, we can
find a gauge transformation such that the transformedA satisfies(92) with ai = 0 for
i ≥ k − 2.

Then(92) for s = k − 2 implies

A = u2
k−2A2(u, . . . , uk−3)+ A0(u, . . . , uk−3). (108)

Further analysis shows thatA2 does not depend onuk−3 andB is of the form

B = 2uk−2ukA2− u2
k−1A2+ B11(u, . . . , uk−3)uk−2uk−1

+B10(u, . . . , uk−3)uk−1+ B0(u, . . . , uk−2). (109)

Differentiating(107)with respect touk, uk−2, we obtain

2Dx(A2)+ B11+ 2[A0, A2] = 0,
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while differentiation with respect touk−1, uk−1 implies

−Dx(A2)+ B11− [A0, A2] = 0.

Therefore,

Dx(A2)+ [A,A2] = 0, (110)

which byLemma 9 (1)says thatA2 does not depend onui, i ≥ 0, and [A,A2] = 0. That
is,A2 is 1-primitive with respect toA.

Definition 9. Let r ∈ Z+ andr < k. A vector field

A =
m∑
j=1

aj(w1, . . . , wm, u, u1, . . . , uk)
∂

∂wj

is said to ber-simple if it satisfies(92) for all s ≥ 1 with ai = 0, i ≥ k − r, and some
a1, . . . , ak−r−1 ∈ C.

Lemma 10.

(1) For each r < k and any covering (107) there is a locally gauge equivalent covering
with r-simple A.

(2) If a covering (107)has r-simple A then the vector fields

A′ = A(u, . . . , uk)− A(u, . . . , uk−r−1,0, . . . ,0),

B′ = B(u, . . . , uk)− B(u, . . . , uk−r+1,0, . . . ,0) (111)

are primitive with respect to A and P, where P is the perfect algebra constructed in
Example 11.

Proof. For r = 2 we proved these statements above. Suppose that the statements of hold
for somer = l ≤ k − 2 and let us prove them forr = l+ 1.

By assumption, each covering is locally equivalent to a covering(107)with l-simpleA.
Then by Part (2) of the lemma we have

A = A′(u, . . . , uk−2)+ Ã(u, . . . , uk−l−1),

B = B′(u, . . . , uk)+ B̃(u, . . . , uk−l+1), (112)

where

Ã = A(u, . . . , uk−l−1,0, . . . ,0), B̃ = B(u, . . . , uk−l+1,0, . . . ,0), (113)

and the primitive vector fieldsA′, B′ are given by(111)for r = l.
We can rewrite(107)as follows:

DxB̃ −DtÃ+ [Ã, B̃] + P = 0, (114)
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where

P = DxB′ −DtA′ + [A,B′] + [A′, B] (115)

is primitive. Indeed, the fact thatDxB′, DtA′, [A,B′] are primitive follows immediately
from the fact thatA′, B′ are primitive, while [A′, B] is primitive by Lemma 9 (3). In
particular,P is polynomial inui, i ≥ 0.

From Eq.(114)it follows easily thatÃ, B̃ are polynomial inuk−l−1, uk−l, uk−l+1. There-
fore,A(u, . . . , uk) andB(u, . . . , uk) are defined forui = ai, i ≤ k − l− 2, and arbitrary
values ofuj, j ≥ k − l− 1. By Lemma 5, after some gauge transformation

wi �→ gi(w1, . . . , wm, u, . . . , uk−l−2)

A becomes (l+ 1)-simple, which proves Part (1) of the lemma forr = l+ 1.
To prove Part (2), consider an arbitrary covering(107) with (l+ 1)-simpleA, where

l ≤ k − 2. Since (l+ 1)-simpleA is alsol-simple, we again have representation(112)and
Eq. (114), where(115)is primitive. Similarly to formulas(108) and (109), from (114)we
obtain

Ã = P1+ u2
k−l−1A

′
2(u, . . . , uk−l−3)+ A′0(u, . . . , uk−l−2), (116)

B̃ = P2+ 2uk−l−1uk−l+1A
′
2− u2

k−lA
′
2+ B′11(u, . . . , uk−l−2)uk−l−1uk−l

+B′10(u, . . . , uk−l−2)uk−l + B′0(u, . . . , uk−l−1), (117)

whereP1, P2 are primitive. Similarly to(110), this implies thatDxA′2+ [A,A′2] is also
primitive. By Lemma 9 (2), the vector fieldA′2 is primitive.

Then the vector fields

A(u, . . . , uk)− A(u, . . . , uk−l−2,0, . . . ,0),

B(u, . . . , uk)− B(u, . . . , uk−l,0, . . . ,0)

are also primitive, which proves Part (2) of the lemma forr = l+ 1.
By the above lemma forr = k − 1, we obtain that after a suitable gauge transformation

one has

A = A′′(u, . . . , uk−2)+ A′′0(u), B = B′′(u, . . . , uk)+ B′′0(u, u1, u2),

whereA′′, B′′ are primitive andA is (k − 1)-simple. Now it is straightforward to prove that
A′′0, B

′′
0 are polynomial inu, u1, u2. �

5.2. The fundamental algebras

From the above proof it follows that for eachk ≥ 3 there are finite subsets

Mk ⊂ Zk−1
+ , Nk ∈ Zk+1

+
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such that the following statement holds. If a covering(107)of Eq. (106)satisfies(92) for
all s ≥ 1 with ai = 0, i ≥ 1, then it is of the form

A =
∑

(i0,...,ik−2)∈Mk

u
i0
0 · · · uik−2

k−2Ai0···ik−2,

B =
∑

(i0,...,ik)∈Nk
u
i0
0 · · · uikk Bi0···ik , (118)

where the vector fields

Ai0···ik−2, Bi0···ik (119)

do not depend onui, i ≥ 0.
Let us show that this canonical form of coverings satisfiesDefinition 5if we take

Ak = {ui00 · · · uik−2
k−2 | (i0, . . . , ik−2) ∈Mk}, Bk = {ui00 · · · uikk |(i0, . . . , ik) ∈ Nk}.

Relation(64) is obvious. Condition (1) ofDefinition 5follows fromTheorem 16. Let

S =
m∑
j=1

sj(w1, . . . , wm, u, u1, . . .)
∂

∂wj

be a symmetry of the covering given by vector fields(118), i.e.,

[Dx + A, S] = [Dt + B, S] = 0. (120)

By Lemma 7, S does not depend onui, i ≥ 0. Then(120) implies thatS commutes with
all vector fields(119), which proves Condition (3) ofDefinition 5. Conditions (2) and (4)
follow analogously fromLemmas 6 and 8respectively.

Vector fields(118)satisfy(107)if and only if certain Lie algebra relations hold for(119).
Denote byfk−2 the quotient of the free Lie algebra generated by letters(119) over these
relations. We obtain the system of fundamental algebras

· · · → fk+1→ fk → · · · → f1→ f0 (121)

for Eq.(106). In particular, the algebrasf1 andf0 are described inExample 9.
Denote byak−2 the subalgebra offk−2 generated byAi0,...,ik−2.

Lemma 11. We have

Bi0···ik ∈ ak−2 for i0+ · · · + ik > 0. (122)

Proof. For (i0, . . . , ik) ∈ Nk set

r(i0, . . . , ik) = max{s | is > 0}.

Let us prove(122)by induction onk − r(i0, . . . , ik).
For (i0, . . . , ik) ∈ Nk with r(i0, . . . , ik) = k it follows from (109).
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Suppose that(122)holds for all (i0, . . . , ik) ∈ Nk with r(i0, . . . , ik) ≥ l+ 1. Differenti-
ate(107)with respect toul+1 and substituteui = 0 for i ≥ l+ 1. SinceA satisfies(92) for
s = l+ 1 andai = 0, we obtain(122)for (i0, . . . , ik) ∈ Nk with r(i0, . . . , ik) = l. �

Combining(122) and (107), one gets

[B0···0, ak−2] ⊂ ak−2. (123)

Substitutingui = 0 to (107), we obtain also

[A0···0,B0···0] = 0. (124)

Let us specify the structure of(118). Fork = 3 it was described inTheorem 1. Similarly
to the proof ofTheorem 16, one obtains that fork ≥ 4 vector fields(118)have the form

A = Ak−2

(
u2
k−2−

2k − 3

3
uu2

k−2

)
+ A′k−2u

2
k−3+ A0(u, . . . , uk−4), (125)

B = 2uk−2ukAk−2+ B0(u, . . . , uk−1), (126)

where

Ak−2 = A0···02, A′k−2 = A0···020,

[Ak−2, A] = 0, (127)

[Ak−2, B] = 3[A0,A′k−2]. (128)

andA0, B0 are polynomial inui.
Eq. (127)implies

[Ak−2, ak−2] = 0. (129)

Combining this with(122) and (128), we obtain

[Ak−2,B0···0] = 3[A0···0,A′k−2]. (130)

Moreover, taking into account(124)and applying adsB0···0 to (130), we obtain

− (ads+1B0···0)(Ak−2) = 3[A0···0, (adsB0···0)(A′k−2)] ∀ s ≥ 0. (131)

By the definition offn and formulas(125) and (126), for eachn ≥ 2 the algebrafn−1 is
isomorphic to the quotient offn over the idealin generated byAn. From(122) and (123),
and (131)we obtain thatin ⊂ an. Moreover,(129)implies

[in, an] = 0. (132)

Lemma 12. For each n ≥ 1 we have the relation

− (adnB0···0)(An) = 0 (133)

in the algebra fn.
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Proof. Forn = 1 this statement follows from(59). By induction onn, suppose that(133)
holds forn− 1. By formula(125), the generatorA′n ∈ fn is mapped toAn−1 ∈ fn−1 by
the natural epimorphismfn→ fn/in ∼= fn−1. Therefore, (adn−1B0···0)(A′n) ∈ in. Combining
this with (131) and (132), we obtain(133). �

From the above results it follows that the elements

ci = (adiB0···0)(An), i = 0, . . . , n− 1,

span the idealin. The elementcn−1 belongs to the center offn. Moreover, for eachi =
0, . . . , n− 1 the image ofci belongs to the center of the quotient

fn/〈ci+1, . . . , cn−1〉.

Thus we have the following statement.

Lemma 13. For each n ≥ 2 the algebra fn is obtained from fn−1 applying the operation
of one-dimensional central extension no more than n times.

Let us now prove the main result of this section.

Theorem 17. The KdV Eq.(106)possesses fundamental algebras (121). Each algebra fk
is quasi-finite and is obtained from the algebra sl2(C)⊗C C[λ] applying several times the
operation of one-dimensional central extension.

Proof. It was shown above that(121)are fundamental algebras of(106). Let us prove that
algebras(121)are quasi-finite.

By Theorem 9, the algebra

g = sl2(C)⊗C C[λ]

is quasi-finite. From(59) it follows that f1 is the trivial central extension of the algebraL
from Proposition 2.

Since the Heisenberg algebraH is nilpotent, the algebraf1 is obtained fromg applying
six times the operation of one-dimensional central extension. Therefore, byTheorem 8, the
algebraf1 is also quasi-finite. Finally, combiningLemma 13andTheorem 8, we obtain that
all fundamental algebras(121)are quasi-finite. �

It is well known thatsl2(C)⊗C C[λ] has no nontrivial central extensions. Combining
this withTheorem 17, we obtain the following specification of the structure offk.

Theorem 18. Each algebra fk is isomorphic to the direct sum of sl2(C)⊗ C[λ] and a
finite-dimensional nilpotent algebra.
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6. Coverings of the Krichever–Novikov equation

Consider the Krichever–Novikov (KN) equation[11,17,18]

ut = u3− 3

2

u2
2

u1
+ h(u)

u1
, uk = ∂ku

∂xk
, (134)

whereh(u) is a polynomial of degree 3 with coefficients inC. If the roots of the polynomial
h(u) are distinct then Eq.(134)is said to benonsingular.

The main goal of this section isTheorem 22.

6.1. The canonical form of coverings

We want to have an analog ofTheorem 16for Eq.(134). The straightforward repetition
of the proof ofTheorem 16is not possible, because(134)is not polynomial inu1.

To overcome this, we need to introduce a perfect algebra that contains the function 1/u1.
By Condition (2) ofDefinition 7, this algebra must contain also

∫
1/u1 du1.

To this end, choose a half-lineL ⊂ C from 0 to∞ such thatV1 = C \ L is simply
connected. Let lnu1 be a single-valued branch of the logarithm defined onV1. SetVi =
C, i �= 1, and letP be the algebra of polynomials in

ui, i ≥ 0,
1

u1
, ln u1. (135)

ThenP is a perfect algebra. Indeed, all conditions ofDefinition 7 are obvious except
of Condition (2). The latter follows from the fact that for anya ∈ Z, b ∈ Z+ there is a
polynomialg in u1, 1/u1, ln u1 such that∂g/∂u1 = ua1 lnb u1.

Remark 14. Thus for Eq.(134)we study not the whole translation-invariant infinite pro-
longation, but the open dense subset

{(u0, u1, . . .) | u1 ∈ C \ L, ui ∈ C ∀ i �= 1}

of it.

In Theorem 16, we proved that every covering of the KdV equation is locally equivalent
to a covering in the canonical form satisfying(92) for all s ≥ 1 andai = 0, i ≥ 1. For Eq.
(134) the pointui = 0 is also crucial. However, one cannot prove the same statement for
coverings of(134), because 1/u1 and lnu1 are not defined atu1 = 0. Let us make necessary
modifications.

Definition 10. A vector field

S =
m∑
j=1

sj(w1, . . . , wm, u, . . . , uk)
∂

∂wj
(136)
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is said to beu1-free if each functionsj(w1, . . . , wm, u, . . . , uk) is polynomial in

ui, i ≥ 1,
1

u1
, ln u1 (137)

with coefficients dependent onu, w1, . . . , wm and the coefficient at the monomialu1 is
zero. (This coefficient is well defined because the functions

ua1 lnb u1, a ∈ Z, b ∈ Z+,

are linearly independent.)

Definition 11. Let r ∈ Z+ andr ≤ k − 2. A vector field

A =
m∑
j=1

aj(w1, . . . , wm, u, u1, . . . , uk)
∂

∂wj

is said to beweakly r-simple if it satisfies(92) for all s ≥ 2 with ai = 0, i ≥ k − r, and
somea2, . . . , ak−r−1 ∈ C.

In contrast tor-simple vector fields, a weaklyr-simple vector field does not necessarily
satisfy(92) for s = 1.

Remark 15. In this section perfect functions are elements of the perfect algebraP defined
above.

Lemma 14. If in Lemmas 6–9one replaces the condition that A satisfies (92) for all s ≥ 1
by the condition that A isu1-free and weakly (k − 2)-simple then the conclusions of these
lemmas remain valid.

Proof. Let us prove thatLemma 9 (1)remains valid, since the other statements are proved
analogously.

So assume thatA(u, . . . , uk) is u1-free and weakly (k − 2)-simple and that Eq.(101)
holds. ByDefinition 11, A satisfies(92) for all s ≥ 2. Therefore, the equations

∂S

∂ui
= 0 ∀ i ≥ 1 (138)

are proved in the same way as inLemma 9 (1).
Let us prove that∂S/∂u is also equal to zero. From(101)for i = 1 we have

∂S(u)

∂u
+ [

∂A

∂u1
, S(u)] = 0. (139)
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SinceA isu1-free and(138)holds, the vector field [∂A/∂u1, S(u)] is either zero or depends
nontrivially on someui, i ≥ 1. Combining this with(138) and (139), we obtain

∂S

∂u
=
[
∂A

∂u1
, S(u)

]
= 0. �

Theorem 19. For any covering of Eq. (134)

DxB −DtA+ [A,B] = 0, (140)

A = A(u, u1, . . . , uk), B = B(u, u1, . . . , uk) (141)

(we omit the dependence on fibre coordinates wj) locally there is an equivalent covering
such that

(1) A, B are polynomial in (135),
(2) A is (k − 2)-simple and u1-free.

Proof. Let (141)be defined on a neighborhood of a pointui = ai.
Lemma 15.

(1) For each r ≤ k − 2 and any covering (140)there is a locally gauge equivalent covering
with r-simple A.

(2) If a covering (140)has r-simple A then the vector fields

A′ = A(u, . . . , uk)− A(u, . . . , uk−r−1,0, . . . ,0),

B′ = B(u, . . . , uk)− B(u, . . . , uk−r+1,0, . . . ,0)

are primitive with respect to A and P.

Proof. This is proved similarly toLemma 10. Formulas(116) and (117)for l ≤ k − 3 are
replaced by

Ã = P1+
u2
k−l−1

u2
1

A′2+ A′0(u, . . . , uk−l−2),

B̃ = P2+ 2
uk−l−1uk−l+1

u2
1

A′2−
u2
k−l
u2

1

A′2+ B′11(u, . . . , uk−l−2)uk−l−1uk−l

+B′10(u, . . . , uk−l−2)uk−l + B′0(u, . . . , uk−l−1),

whereP1, P2, A
′
2 are primitive. �

By the above lemma forr = k − 2, after a suitable gauge transformation we have

A = A′ + A0(u, u1), B = B′ + B0(u, u1, u2, u3), (142)
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where the vector fields

A′ = A(u, . . . , uk)− A(u, u1,0, . . . ,0),

B′ = B(u, . . . , uk)− B(u, u2, u3,0, . . . ,0) (143)

are primitive andA is (k − 2)-simple.
Substituting(142)to (140), it is straightforward to obtain that

A0 = C + 1

u1
A1(u)+ u1A2(u)+ A3(u), (144)

whereC is primitive.
The vector fieldA remains weakly (k − 2)-simple and polynomial in(137) after any

gauge transformation of the form

wi �→ f i(w1, . . . , wm, u). (145)

Let us find a gauge transformation(145)such thatA becomesu1-free. To this end, let

m∑
j=1

cj(w1, . . . , wm, u)
∂

∂wj

be the coefficient ofA at the monomialu1 and consider the system of ordinary differential
equations

d

du
f j(w1, . . . , wm, u) = cj(f 1, . . . , fm, u), j = 1, . . . , m,

dependent on the parametersw1, . . . , wm. Its local solution with the initial condition

f j(w1, . . . , wm, a0) = wj, j = 1, . . . , m,

determines gauge transformation(145)that makesA u1-free.
By Lemma 14, in Lemma 15 (2)for r = k − 2 the condition thatA is (k − 2)-simple can

be replaced by the condition thatA is weakly (k − 2)-simple andu1-free. Therefore, after
this gauge transformation vector fields(143)remain primitive and we have formula(144)
with primitive u1-freeC andA2(u) = 0.

Now it is straightforward to show that

A(u, u1,0, . . . ,0), B(u, u2, u3,0, . . . ,0) (146)

are polynomial in(135). Therefore,A andB satisfy the conditions of the theorem.�

6.2. The fundamental algebras

Consider the following set of perfect functions:

Z = {(lna u1)ui00 u
i1
1 u

i2
2 · · · uikk |i1 ∈ Z, a, i0, i2, . . . , ik ∈ Z+, |i1|

+ a+ i0+ i2+ · · · + ik > 0}.
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Similarly to the case of the KdV equation, from the proof ofTheorem 19it follows that for
eachk ≥ 3 there are finite subsets

A′k, B
′
k ⊂ Z, A′k ⊂ A′k+1, B′k ⊂ B′k+1

such that the following statement holds. If a covering(140)of Eq.(134)has (k − 2)-simple
u1-freeA then it is of the form

A =
∑
f∈A′

k

fAf + A1, B =
∑
g∈B′

k

gBg + B1, (147)

where the vector fields

Af , Bg, A1, B1 (148)

do not depend onui, i ≥ 0.
Let us show that the conditions ofDefinition 5hold, if we set

Ak = A′k ∪ {1}, Bk = B′k ∪ {1}.

Indeed, Condition (1) follows fromTheorem 19. Conditions (2)–(4) hold because, by
Lemmas 14, 6, 7 and 8are applicable to the canonical form of coverings described in
Theorem 19.

Vector fields(147)satisfy(140)if and only if certain Lie algebra relations hold for(119).
Denote byfKNk−2 the quotient of the free Lie algebra generated by letters(119) over these
relations. We obtain the system of fundamental algebras

· · · → fKNn+1→ fKNn → · · · → fKN1 → fKN0 (149)

for Eq.(134).

Proposition 4 (Sokolov[17]). For each integer n ≥ 2 there is a conserved currentDtfn =
Dxgn of the form

fn = u2
n

u2
1

+ f̃n(u, . . . , un−1), gn = 2
unun+2

u2
1

+ g̃n(u, . . . , un+1),

where f̃n, g̃n are polynomials in 1/u1, ui, i ≥ 0.

Similarly to Lemma 5, we can find equivalent conserved currents

f ′n = fn +Dx(hn(u, . . . , un−2)), g′n = gn +Dt(hn(u, . . . , un−2))

such that

• the functionsf ′n, g′n are perfect,
• we have



990 S. Igonin / Journal of Geometry and Physics 56 (2006) 939–998

∂f ′n
∂us

(u, . . . , us−1,0, . . . ,0)= 0 ∀ s ≥ 2,

• f ′n is polynomial in(137)with zero coefficient at the monomialu1.

Example 12. We have

f ′2 =
u2

2

u2
1

+ 2

3

h(u)

u2
1

,

g′2 = 2
u2u4

u2
1

− u
2
3

u2
1

− 4

3

h(u)u3

u3
1

− 4
u2

2u3

u3
1

++9

4

u4
2

u4
1

− h(u)
u2

2

u4
1

+2
dh(u)

du

u2

u2
1

− 1

3

h(u)2

u4
1

.

Return to algebras(149). Let ak ⊂ fKNk−2 be the subalgebra generated byAf , f ∈ A′k,
and ãk ⊂ fKNk−2 be the subalgebra generated byak−2 andA1. Similarly to Lemma 11, we
obtain

Bg ∈ ak−2 ∀ g ∈ B′k, (150)

[B1, ãk−2] ⊂ ak−2. (151)

Fork ≥ 5 vector fields(147)can be rewritten as follows:

A = f ′k−2Ak−2+ u
2
k−3

u2
1

Ãk−2+ A0(u, . . . , uk−4), (152)

B = g′k−2Ak−2+ B0(u, . . . , uk−1), (153)

where

Ak−2 = A
u2
k−2u

−2
1
, Ãk−2 = A

u2
k−3u

−2
1
, [Ak−2, A] = 0, (154)

[Ak−2, B] = 3[A0, Ãk−2]. (155)

Eq.(154)implies

[Ak−2, ãk−2] = 0.

Combining this with(150) and (155), we obtain

[Ak−2,B1] = 3[A1, Ãk−2], (156)

[Ãk−2, ak−2] = 0. (157)

Taking into account(157) and (151)and applying adsB1 to (156), we obtain

− (ads+1B1)(Ak−2) = 3[A1, (adsB1)(Ãk−2)] ∀ s ≥ 0. (158)
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Similarly to Section5.2, the obtained identities imply that for eachk ≥ 5 the algebrafKNk−2 is
obtained fromfKNk−3 applying several times the operation of one-dimensional central exten-
sion.

Let us describe the algebrasfKNi for i = 0,1,2.

Theorem 20. Any covering of Eq.(134)of the form

DxB −DtA+ [A,B] = 0, A = A(u, u1, u2, u3, u4), B = B(u, u1, u2, u3, u4)

is locally equivalent to a covering of the form

A = f ′2C +
1

u1
A1(u)+ V1,

B = g′2C −
u3

u2
1

A1+ u2
2

2u3
1

A1+ 2u2

u1

∂A1

∂u
− h(u)

3u3
1

A1+

+ 2

u1
[A1,

∂A1

∂u
] − 2u1

∂2A1

∂u2 + V2,

whereA1 = A10+ uA11+ u2A12, the vector fieldsC, Vi, A1k do not depend on ui, i ≥ 0,
and are subject to the following relations:

[C,Vi] = [C,A1k] = [V1, V2] = [Vi, A1k] = 0 i = 1,2, k = 0,1,2, (159)

2h(u)
∂A1

∂u
− dh(u)

du
A1− 3[A1, [A1,

∂A1

∂u
]] = 0. (160)

Proof. This is proved by a straightforward computation following the scheme of the proof
of Theorem 19. Relation(160)was obtained in[6]. �

Eq. (160)determines some relations between the vector fieldsA1k, k = 0,1,2. Let us
describe the quotient of the free Lie algebra generated byA1k over these relations.

Consider the idealI ⊂ C[v1, v2, v3] generated by the polynomials

v2
i − v2

j + 8
3(ej − ei), i, j = 1,2,3, (161)

wheree1, e2, e3 are the roots of the polynomialh(u). Set

E = C[v1, v2, v3]/I.

That is,E is the ring of regular functions on the affine elliptic curve inC3 defined by
polynomials(161). The image ofvj ∈ C[v1, v2, v3] in E is denoted bȳvj. Consider also a
basisx1, x2, x3 of the Lie algebrasl2(C) ∼= so3(C) with the relations

[x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x2 (162)

and endow the spaceL = sl2⊗C E with the Lie algebra structure described in(76).
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Proposition 5 (Igonin [6]). Suppose that the roots e1, e2, e3 of h(u) are distinct. The
quotient of the free Lie algebra generated by A1k, k = 0,1,2, over relations (160) is iso-
morphic to the subalgebra R ⊂ L generated by the elements

x1⊗ v̄1, x2⊗ v̄2, x3⊗ v̄3 ∈ L.

From(159)we obtain

fKN0 = 0, fKN1
∼= R⊕ C2, fKN2

∼= R⊕ C3.

Theorem 21. The algebra R is quasi-finite.

Proof. Below we assume everywhere that{j, k, l} = {1,2,3}. For eachj = 1,2,3 consider

the subspaceVj ⊂ C[v1, v2, v3] spanned by the monomialsv
dj
j v

dk
k v

dl
l satisfying

dj ≡ dk + 1≡ dl + 1 mod 2. (163)

Denote byRj the image ofVj in the quotient spaceE.
The algebraR was also studied in[14] in connection with coverings of the Landau–

Lifshitz equation. In the proof of Lemma 3.1 of[14] it is shown thatR = ⊕3
j=1〈xj〉 ⊗ Rj.

Let h ⊂ R be a subalgebra of finite codimension. Then the subspaceHj = {f ∈
Rj | xj ⊗ f ∈ h} is of finite codimension inRj for eachj = 1,2,3. In addition, from the
definition ofRj and relations(162)we have

RjRk ⊂ Rl, HjHk ⊂ Hl. (164)

This implies that for allj = 1,2,3 the subspace

H ′j = {a ∈ Hj | aRk ⊂ Hl, aRl ⊂ Hk} (165)

is also of finite codimension inRj. From(164) and (165)one gets

H ′jH
′
k ⊂ H ′l , H ′jRjRkRl ⊂ H ′j. (166)

It is easy to see thatRj = 〈v̄j〉 + RkRl. Therefore,

R2
j = 〈v̄2

j〉 + RjRkRl. (167)

For eachj = 1,2,3 the subspace

H ′′j = {a ∈ H ′j|av̄2
k ⊂ H ′j, av̄2

l ⊂ H ′j, aRk ⊂ H ′l , aRl ⊂ H ′k} (168)

is of finite codimension inH ′j and, therefore, inRj. By definitions(168) and (165)and
properties(164), (166) and (167), one gets

RkH
′′
j ⊂ H ′′l , RlH

′′
j ⊂ H ′′k ,

which implies that⊕3
j=1〈xj〉 ⊗H ′′j ⊂ h is an ideal ofR. SinceH ′′j is of finite codimension

in Rj, this ideal is of finite codimension inR. �
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Collecting the results of this subsection and taking into accountTheorems 21 and 8, one
obtains the following.

Theorem 22. The nonsingular Krichever–Novikov equation (134)possesses fundamental
algebras (149), where fKN0 = 0. Each fKNn for n > 0 is quasi-finite and is obtained fromR
applying several times the operation of one-dimensional central extension.

7. Coverings of the equation ut = uxxx

In this section we study the linear equation

ut = uxxx. (169)

The following theorem is proved by a straightforward computation.

Theorem 23. Any Wahlquist–Estabrook covering

DxB −DtA+ [A,B] = 0, A = A(u, u1, u2), B = B(u, u1, u2)

of Eq. (169)is of the form

A = u2A2+ uA1+ A0,

B = u2(2uA2+ A1)− u2
1A2+ u1[A1, A0] − 1

2u
2[A1, [A1, A0]]

+ u[A0, [A0, A1]] + B0,

where the vector fields Ai, B0 depend only on w1, . . . , wm and are subject to the relations

[A0, A2] = [A1, A2] = 0, (170)

[A0, B0] = 0, (171)

[A1, [A1, [A1, A0]]] = 0, (172)

[A2, B0] = 3
2[A0, [A1, [A1, A0]]] , (173)

[B0, A1] = [A0, [A0, [A0, A1]]] . (174)

Denote byN the quotient of the free Lie algebra generated byAi, B0 over relations(170)–
(174). Similarly to Section5.1one proves the following.

Theorem 24. Eq. (169)possesses a system of fundamental algebras, which are obtained
from N applying several times the operation of one-dimensional central extension.

Let us present some information on the structure ofN.

Theorem 25. There are ideals Ni, i ∈ Z+, of N such that
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• N0 = 0, Ni ⊂ Ni+1 ∀ i ∈ Z+,
• the quotient Ni+1/Ni is commutative for all i ∈ Z+,
• the quotient N/ ∪i Ni is solvable.

Proof. For a subsetS of a Lie algebra we denote by〈S〉 the ideal generated by this subset.
For simplicity, below the images ofAi, B0 ∈ N in quotients ofN are denoted by the
same symbolsAi, B0. From the relations that define the algebraN one easily obtains the
following.

Lemma 16. Let Q be a quotient algebra of N and C be an element of the subalgebra
of Q generated by Ai. If [A0, C] = [A1, C] = 0 then the ideal 〈C〉 ⊂ Q is spanned by the
elements (adkB0)(C), k ∈ Z+, and is commutative.

Let us construct the required idealsNi. SetN0 = 0 andN1 = 〈A2〉. Combining relation
(170)with the above lemma, we see thatN1/N0 = N1 is commutative. By induction on
i ∈ N, set

Ni+1 = 〈Ni, [A1, (ad2i−1A0)(A1)]〉. (175)

Lemma 17. For all i ≥ 1 in the quotient algebra N/Ni we have

[(adkA0)(A1), (adlA0)(A1)] = 0 ∀ k, l ∈ Z+ k + l ≤ 2i− 2, (176)

[A0, [A1, (ad2i−1A0)(A1)]] = [A1, [A1, (ad2i−1A0)(A1)]] = 0. (177)

Proof. Let us prove this by induction oni. For i = 1 relation(176)is trivial, and relation
(177)follows from(172) and (173). Suppose that the statement holds fori = n ≥ 1 and let
us prove it fori = n+ 1. By the induction assumption, relations(176) for i = n hold in
N/Nn+1. By Definition 175, we have also

[A1, (ad2n−1A0)(A1)] = 0. (178)

Applying the Jacobi identity to(178)and taking into account(176)for i = n, we obtain

[(adkA0)(A1), (adlA0)(A1)] = 0 ∀ k, l ∈ Z+ k + l ≤ 2n− 1. (179)

By the same argument, we have

[(adkA0)(A1), (adlA0)(A1)] = −[(adk+1A0)(A1), (adl−1A0)(A1)] ∀ k + l = 2n.

(180)

Using this, we obtain

[(adkA0)(A1), (adlA0)(A1)] = [(adlA0)(A1), (adkA0)(A1)] = 0 ∀ k + l = 2n.

(181)

Relations(179) and (181)imply (176)for i = n+ 1.
It remains to prove(177)for i = n+ 1, that is,

[A0, [A1, (ad2n+1A0)(A1)]] = 0, (182)

[A1, [A1, (ad2n+1A0)(A1)]] = 0. (183)
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Relation (183) follows easily from the Jacobi identity combined with(176) for
i = n+ 1.

Similarly to (180)we have

[(adkA0)(A1), (adlA0)(A1)]

= −[(adk+1A0)(A1), (adl−1A0)(A1)] ∀ k + l = 2n+ 1. (184)

SetI = [A1, (ad2n+1A0)(A1)]. Using(184), one gets

I = (−1)n[(adnA0)(A1), (adn+1A0)(A1)]

= (−1)n+1[(adn−1A0)(A1), (adn+2A0)(A1)].

Applying adA0 to this equality, we obtain

[A0, I] = (−1)n[(adnA0)(A1), (adn+2A0)(A1)]

= (−1)n+1([(adnA0)(A1), (adn+2A0)(A1)]

+ [(adn−1A0)(A1), (adn+3A0)(A1)]). (185)

On the other hand, applying adB0 to [(adn−1A0)(A1), (adnA0)(A1)] = 0 and taking
into account(174) and (113), one gets

[(adn+2A0)(A1), (adnA0)(A1)] + [(adn−1A0)(A1), (adn+3A0)(A1)] = 0.

Combining this with(185), we obtain [A0, I] = 0, which proves relation(183). �
By Lemma 16, relation(177) implies thatNi+1/Ni is commutative. Relation(176) says
that in the quotient algebraN/ ∪i Ni we have

[(adkA0)(A1), (adlA0)(A1)] = 0 ∀ k, l ∈ Z+, (186)

which implies that this quotient ofN is solvable. �

Theorem 26. The algebra N is not quasi-finite.

Proof. In the quotient algebraN/ ∪i Ni denoteck = (adkA0)(A1). Consider the subal-
gebrag of N/ ∪i Ni generated byB0 and ck. Obviously, for a quasi-finite algebra any
quotient algebra and any subalgebra of finite codimension are also quasi-finite. Therefore,
it is sufficient to prove that the algebrag is not quasi-finite.

Relations(186)say that [ck, cl] = 0, while relations(174) and (113)imply [B0, ck] =
ck+3. Let mk, k ∈ Z+, be a sequence of nonzero complex numbers satisfyingmk+3 =
−(k + 1)mk. Consider the following transitive action ofg on the manifoldM = {(x, y) ∈
C

2 | x �= 0, y �= 0}

ck �→ mk

xk+1

∂

∂y
, B0 �→ 1

x2

∂

∂x
.

By Theorem 7, since the image ofg in D(M) is infinite-dimensional, the algebrag is not
quasi-finite. �



996 S. Igonin / Journal of Geometry and Physics 56 (2006) 939–998

8. Nonexistence results for Bäcklund transformations

Theorem 27. Eq. (169)is not connected by any Bäcklund transformation neither with the
KdV equation nor with the nonsingular Krichever–Novikov equation.

Proof. Below a Lie subalgebra denoted byh, h1, or h2 is always supposed to be of finite
codimension. The following lemma is obvious.

Lemma 18. Let g be a finite-dimensional semisimple Lie algebra. Suppose that a Lie
algebra g1 is obtained from a Lie algebra g2 applying several times the operation of one-
dimensional central extension. Then each of the following properties holds for i = 1 if and
only if it holds for i = 2:

• There are a subalgebra h ⊂ gi and an epimorphism h→ g.
• For any subalgebra h ⊂ gi there is an epimorphism h→ g.

Setg = sl2(C). Let us prove first that there is no Bäcklund transformation between Eq.(169)
and the nonsingular Krichever–Novikov equation. CombiningLemma 18with Theorems
22, 24 and 14, we see that it is sufficient to prove that for any subalgebrash1 ⊂ R, h2 ⊂ N
there is an epimorphismh1→ g, but there is no epimorphismh2→ g.

There is a natural family of epimorphismsR→ g parameterized by the points of the
affine curve inC3 given by polynomials(161). Namely, for a point (a1, a2, a3) of the curve
the generatorxi ⊗ v̄i of R is mapped toaixi ∈ g. Sinceh1 is of finite codimension inR,
here are polynomialsfi(v̄1, v̄2, v̄3) and a point (a1, a2, a3) of the curve such thatxi ⊗ fi
belongs toh1 andfi(a1, a2, a3) �= 0 for all i = 1,2,3. Then the restriction toh1 of the
corresponding homomorphismρ : R→ g is surjective, since the elements

ρ(xi ⊗ fi) = fi(a1, a2, a3)xi, i = 1,2,3,

spang.
Nonexistence of an epimorphismh2→ g follows from Theorem 25. Indeed, suppose

that there is an epimorphismρ : h2→ g. Sinceh2 ∩Ni is solvable, we haveρ(h2 ∩Ni) = 0
for all i. Therefore, there is an epimorphism

h2/(h2 ∩ (∪iNi))→ g,

which is impossible, sinceN/ ∪i Ni is solvable.
Let us now prove that there is no Bäcklund transformation between Eq.(169)and the

KdV equation. Since, according toTheorem 17, each fundamental algebra of the KdV
equation is obtained fromg⊗ C[λ] applying several times the operation of one-dimensional
central extension, it is sufficient to prove that for any subalgebrah1 ⊂ g⊗ C[λ] there is an
epimorphismh1→ g. Consider the natural family of epimorphisms

ρa : g⊗ C[λ] → g, g⊗ f (λ) �→ f (a)g, a ∈ C.
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Sinceh1 is of finite codimension, for some of these epimorphisms its restriction toh1 is
surjective. �
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[16] C. Rogers, W.F. Shadwick, Bäcklund Transformations and their Applications, Academic Press, New York,
1982.

[17] V.V. Sokolov, On the hamiltonian property of the Krichever–Novikov equation, Soviet. Math. Dokl. 30 (1984)
44–46.

[18] S.I. Svinolupov, V.V. Sokolov, R.I. Yamilov, B̈acklund transformations for integrable evolution equations,
Soviet Math. Dokl. 28 (1983) 165–168.



998 S. Igonin / Journal of Geometry and Physics 56 (2006) 939–998

[19] H.N. van Eck, The explicit form of the Lie algebra of Wahlquist and Estabrook. A presentation problem,
Nederl. Akad. Wetensch. Indag. Math. 45 (1983) 149–164.

[20] H.N. van Eck, A non-Archimedean approach to prolongation theory, Lett. Math. Phys. 12 (1986) 231–
239.

[21] A. Verbovetsky, Notes on the Horizontal Cohomology. Secondary Calculus and Cohomological Physics
(Moscow, 1997): Contemp. Math., vol. 219, Am. Math. Soc., Providence, RI, 1998, pp. 211–
231.

[22] H.D. Wahlquist, F.B. Estabrook, Prolongation structures of nonlinear evolution equations, J. Math. Phys. 16
(1975) 1–7.


	Coverings and fundamental algebras for partial differential equations
	Introduction
	Basics
	Some terminology
	Infinite-dimensional manifolds
	PDEs as manifolds with distributions
	Coordinate description
	Differential coverings
	Coverings as transformations of PDEs
	Actions of Lie algebras on manifolds
	Zero-curvature representations
	Translation-invariant coverings
	Wahlquist--Estabrook coverings

	Analogs of the fundamental group for differential coverings
	An instructive example
	The definition of the fundamental algebras
	Regular coverings and their symmetry algebras
	Quasi-finite Lie algebras
	Local structure of irreducible coverings
	Necessary conditions for existence of B"acklund transformations

	Coverings of scalar evolution equations
	Coverings of the KdV equation
	The canonical form of coverings
	The fundamental algebras

	Coverings of the Krichever--Novikov equation
	The canonical form of coverings
	The fundamental algebras

	Coverings of the equation ut=uxxx
	Nonexistence results for B"acklund transformations
	Acknowledgements
	References


